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1 Introduction
In the past years, we have analyzed the security of connected vehicles from top 
brands worldwide, such as BMW[1], Lexus[2], and Tesla[3][4][5]. Mercedes-Benz is 
also a great vehicle vendor, which is producing the most advanced cars in the 
world. It is worthwhile to study cars made by Mercedes-Benz.

Mercedes-Benz's latest infotainment system is called Mercedes-Benz User 
Experience(MBUX). Mercedes-Benz first introduced MBUX in W177 Mercedes-
Benz A-Class[6] and adopted MBUX in their entire vehicle line-up, including 
Mercedes-Benz C-Class, E-Class, S-Class, GLE, GLS, EQC, etc. MBUX is powered 
by Nvidia's high-end autonomous vehicle platform. Many cutting-edge 
technologies presented on this system, such as virtualization, TEE, augmented 
reality, etc.

Earlier this year, Qihoo 360 published their research on Mercedes-Benz [7], which 
mainly focused on Mercedes-Benz 's T-Box, instead of the central infotainment 
ECU: head unit. The test bench showed in their presentation was built with an 
NTG5 head unit, which is a bit old.

In MBUX, the tested head unit version is NTG6 (being used in A-, E-Class, GLE, 
GLS and EQC). Our research was based on this brand new system MBUX, NTG6 
head unit, and vehicle W177.

In our research, we analyzed many attack surfaces and successfully exploited 
some of them on head unit and T-Box. By combining some of them, we 
can compromise the head unit for two attack scenarios, the removed head 
units and the real-world vehicles. We showed what we could do after we 
compromised the head unit. Figure 1.1 demonstrates the compromisation of 
an actual car.

We didn't find a way to compromise the T-Box. However, we demonstrated 
how to send arbitrary CAN messages from T-Box and bypass the code signing 
mechanism to fash a custom SH2A MCU firmware by utilizing the vulnerability 
we found in SH2A firmware on a debug version T-Box.
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In this document, we will describe our findings during the research.

Chapter 2 introduces the whole architecture overview about hardware, 
software, and CAN networks.

Chapter 3 describes our test bench setup, how we built a low-cost testing 
environment, how we collected ECUs and wired them up, and how we powered 
up our test bench.

Chapter 4 illustrates the potential attack surfaces on head unit and T-Box.

Chapter 5 presents the details of four attack surfaces of head unit in the 
direction from the outside to the internal system.

Chapter 6 will discuss the potential impact after the head unit is compromised. 
For example, we can tamper with the images displayed on the screen and 
perform some vehicle actions after we compromised the head unit.

Chapter 7 presents two attack attempts of T-Box in the direction from the 
outside to the internal system.

Chapter 8 describes two attack processes that target the SH2A MCU on T-Box. 
By utilizing the vulnerabilities in SH2A firmware, we can send arbitrary CAN 
messages to CAN-D CAN bus and ash a custom firmware on SH2A MCU.

Figure 1.1: Compromised head unit
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Chapter 9 demonstrates our research on the hardware module Country 
Specific Board and Airbag Controller Module. We will introduce the research on 
digital radio and the search process of the Airbag Controller Module. 

In Chapter 10, we analyze the potential attack chains by combining the 
potential attack surfaces. We successfully verified each of the head unit's 
attack chains, the removed infotainment compromise scheme, and the actual 
vehicle compromise scheme. Also, we mention the unrealized attack chains in 
our research.

Chapter 11 and Chapter 12 list the hardware and software versions we tested 
on and the vulnerabilities we found.

In the end, we conclude our research.
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2 Architecture overview
Based on our hardware, some public documents, and function analysis, we 
basically understand the entire architecture of the MBUX. The architecture 
overview is shown in Figure 2.1.

2.1 Hardware

2.1.1 Head Unit

Head unit’s version is NTG6. It plays a vital role in the MBUX infotainment 
system. It provides multimedia, navigation, voice control, and other functions.

Figure 2.1: Architecture overview
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From the connectors in the head unit’s back, we can overview the head unit’s 
function.

NTG6 head unit composes three main PCB boards inside. Vendor named them 
Multimedia Board(MMB), Base Board(BB) and Country Specific Board(CSB).

Figure 2.2 : Head unit

Figure 2.3: Head unit Interfaces
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Multimedia Board

On Multimedia Board, there is a big Nvidia Parker SoC. Near the SoC, there is a 
32GB MMC. This MMC stores the main file system of the head unit system.

Figure 2.4: Multimedia Board

Figure 2.5: DRAM and NAND flash
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After removing this SoC’s cooling shield, we can see 4 DRAM, a NAND flash 
chip, and its main processor. The NAND flash contains bootloader, hypervisor, 
and TEE related code and data.

Base Board

On the top side of the Base Board, there is an RH850 chip R7F7015223 from 
Renesas. It is mainly responsible for CAN transmission. One MOST interface 
controller OS81118, which provides the MOST network to the head unit 
operating system. Two 5G Wi-Fi chips BCM89359. One is for connections to 
passengers’ devices. The other one is for connections to T-Box.

Figure 2.6: Base Board Top View
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On the bottom side of the Base Board, there is a switch chip: KSZ8895MLU. 
This switch chip is the center of head unit Ethernet. Most of the system in head 
unit that requires Ethernet connects to this chip.

There is a DSP chip from Analog Devices: ADSP-21489. According to our 
analysis, it is responsible for audio processing. The architecture is SHARC.

Figure 2.7: Base Board Bottom View
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Country Specific Board

The Country Specific Board in head unit varies by country. The board in our 
head unit runs a Jacinto 5 Linux system. There is a radio solution from NXP, 
named Saturn. And there is a GNSS chip from u-blox.

2.1.2 T-Box

T-Box, it’s also called TCU or HERMES module. It connects the vehicle to LTE 
network, provides head unit internet connection, and receives vehicle control 
commands from the cloud server.

Figure 2.8: Country Specific Board
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2.1.3 Electronic Ignition Switch

The Electronic Ignition Switch(EIS) is the gateway ECU in the vehicle. It mainly 
contains two functions, the keyless function and the gateway function. 
According to our experiment, this ECU also acts as a firewall that filters CAN 
messages.

Figure 2.9: T-Box

Figure 2.10: Electronic Ignition Switch
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2.1.4 Instrument Cluster

Figure 2.11 shows the instrument cluster ECU. There is an RH850 chip inside, 
which runs an RTOS. It connects to head unit with Ethernet and a video wire.

2.2 Software

2.2.1 Head Unit

On the NTG6 head unit, the Multimedia Board consists of the Tegra T18X SoC. 
Therefore, the hardware can support the Nvidia Tegra hypervisor very well. The 
hypervisor virtualizes two Linux systems. One is the primary Linux system, and 
another is the display server.

Besides, the Multimedia Board also supports Trusty TEE , which is used for 
encrypting some sensitive data of the system.

2.2.2 T-Box

On T-Box, the system runs on SoC ME919bs designed by Huawei. It is a Linux 
system, but similar to an Android in some ways. For example, the dynamic 

Figure 2.11: Instrument Cluster
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linker and the format of the boot image. Programs are developed by Harman 
and Huawei.

2.3 CAN Network Overview

There are many CAN buses on Mercedes-Benz A200L cars. Figure 2.12 shows 
the overview of the CAN network.

Figure 2.12: CAN Network Overview
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3 Research Environment Setup

Testing on a real car is convenient, but for a security test, testing on a test 
bench can reduce the risk of vehicle damage and provide more flexibility.

We bought many infotainment ECUs for building our test bench, including four 
head units, server T-Boxes, and other ECUs.

In this chapter, we show our steps to assemble ECUs we bought into a working 
test bench.

3.1 Connecting ECUs

According to Mercedes-Benz software’s whole view of the wiring diagram, 
we wired the ECUs we bought. Figure 3.2 shows our test bench’s connection 
diagram.

Figure 3.1: Second-hand ECUs
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3.2 Wake Up Test Bench

The test bench won’t simply be powered on after connected to the power 
supply. In an actual car, when you ignite the engine, wake-up CAN signals come 
from CAN bus to power the head unit up. We need to capture and replay these 
signals.

We don’t have a real car to capture the signals at that time. However, we found 
that there are tiny boxes in the vehicle market that emit wake-up signals. We 
bought one of these boxes and successfully powered on our test bench.

Figure 3.2: Bench connection diagram

Figure 3.3: Wake-up CAN box
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Out of curiosity, we captured signals that came from this box. It emits three 
CAN signals periodically.

Connect this wake-up CAN box to CAN-HMI, head unit boots, and the screen 
lights up.

3.3 Anti-Theft

After the head unit booted up, it enters Anti-Theft mode. A notification UI layer 
covers the touch screen in this mode, preventing the user from operating on 
the screen. We will show our method of Anti-Theft unlocking in the following 
chapters.

ID DATA

0x25E 64 64 64 00 03 00 00 00

0x2F7 C2 50 10 57 12 5D 5F 53

0x020 39 C9 41 1C C0 00 00 C0

Table 3.1: Wake-up CAN signals

Figure 3.4: Working test bench

Figure 3.5: Anti-Theft screen
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4 Attack Surfaces Analysis

After the testing environment has been set up, we analyzed the attack surfaces 
of MBUX. In this chapter. We will list the common attack surfaces that exist 
on head unit and T-Box. We will also assess the difficulty and the possibility of 
compromising these attack surfaces. Figure 4.1 shows the attack surfaces we 
found on Mercedes-Benz A200L. We only tried some of the attack surfaces.

4.1 Head Unit

4.1.1 Attack Through Browser

MBUX provides a browser application for the driver and passengers on the 
touch screen. From a security point of view, it opens a dangerous attack 
interface since the browser’s JavaScript engine is more likely to be vulnerable.

4.1.2 Wi-Fi

Figure 4.1: Attack surfaces
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Attack Wi-Fi chip

In NTG6 head unit, there are two BCM89359 Wi-Fi modules on broad BB. The 
BCM89359 chip a 5G Wi-Fi/Bluetooth Smart 2X2 MIMO Combo Chip. One is 
used to set up an AP for passengers. The other is used to set up an AP for T-Box.

In the year 2020, we published a research about the Wi-Fi Stack on Tesla. The 
research demonstrates two attack surfaces belong to an attack chain, from 
wireless packet to Wi-Fi chip and from Wi-Fi chip to host system. For NTG6 
head unit, the two attack vectors are different.

For the first attack vector that from wireless packet to Wi-Fi chip, a vulnerability 
should be found in the Broadcom BCM89359 firmware. Project zero published 
their researches on Broadcom Wi-Fi firmware and showed how to exploit the 
Broadcom firmware vulnerability. We didn’t reproduce such a kind of attack on 
NTG6 head unit.

Attack from Wi-Fi chip to Host system

On NTG6 head unit, the Wi-Fi chip connects to the host system via the PCI-E 
interface. According to project zero’s research, it is possible to perform a DMA 
attack to write the host’s physical memory directly if the host does not enable 
IOMMU or VT-d. On NTG6 head unit, the host system is launched by the Nvidia 
hypervisor. What’s important is that the IOMMU is enabled. Eventually we didn’t 
achieve a successful exploit. In the worst case, the hypervisor will panic.

4.1.3 Kernel

The version of the Linux kernel in the system is 3.18.71, which is outdated. In 
our research, We utilized a kernel vulnerability to achieve privilege escalation.

4.1.4 Ports on MMB

The CSB system and MMB system are both Linux systems. They can 
communicate through Ethernet. Their IP addresses belong to the subnet 
192.168.210.109/30. Many TCP or UDP ports on the MMB system can be 
accessed by CSB. For example, the radio information is transferred through a 
TCP socket. Therefore, there are many attack vectors from CSB.
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4.1.5 Bluetooth

Head unit provides Bluetooth functions to passengers. If there are 
vulnerabilities in Bluetooth stack, it’s possible to achieve code execution in head 
unit. We demonstrated this kind of attack in our Lexus research[2]. We didn’t 
focus on Bluetooth this time on Mercedes-Benz.

4.1.6 USB

As far as we know, head unit supports USB sticks. There is code to save user 
configurations and system logs to USB sticks. Also, there is code to read map 
data and Point of Interest(POI) data from a USB stick. Improper handling of 
these data can lead to security risks.

Head unit supports Carplay, Android Auto, MirrorLink, and CarLife. These 
functions can be accessed via USB. If there are vulnerabilities in any of these 
functions, it will be possible to attack head unit through USB.

4.1.7 App

Nowadays, vendors like to put third-party apps in their head unit. According 
to our previous experience, third-party apps are prone to Man-In-the-Middle 
attacks.

Mercedes-Benz also supports third-party Apps, which communicate with 
remote servers. The functions of these Apps are very limited. We didn’t test 
this attack surface in our research because the Apps in our test bench are not 
working.

4.2 T-Box

4.2.1 Attack Through Wi-Fi Chip

On T-Box, the vendor of the wireless chip is Broadcom, and the model is 
bcm4359. Inspired by Project Zero’s research[8][9], we also investigated if the 
T-Box is vulnerable to the same DMA issue. The chip can overwrite arbitrary 
physical memory unlimited since this bcm4359 connects to the host system 
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through the PCI-E bus.

4.2.2 Attack Through GNSS

On T-Box, there is a chip STA8090 which is a single die standalone positioning 
receiver IC working on multiple constellations. This chip connects to the host 
system via serial. The process Location receives NMEA messages from the 
STA8090 through this serial.

The firmware can be found from the file system. It is an RTOS system based on 
OS20. Therefore, there are two attack vectors. The first one is from wireless to 
STA8090 chip. The second one is to attack the host system from the STA8090 
chip through serial.

4.2.3 CAN

On Mercedes-Benz A200L Cars, T-Box connects to CAN bus CAN-D. The SH2A 
chip is responsible for transmitting and receiving CAN messages between 
the Linux system and CAN bus. Therefore, a difficult attack surface is that 
attacking the SH2A chip from the CAN-D bus.

Additionally, some processes will process the message wrapped by CANTP 
protocol or other protocol. It gives the attacker a chance to attack the user-
mode process from the CAN bus.

4.2.4 Baseband

The T-Box utilizes Huawei’s LTE solution me919bs. It means the baseband is 
balong and the firmware for cellular baseband locates on T-Box’s file system.

In 2017, we compromised Huawei’s balong baseband in pwn2own. We found in 
T-Box firmware version E311, the bug we used in pwn2own exists.

We set up the environment we used in pwn2own. But we found that the T-Box 
wouldn’t connect to our station. The T-Box uses UMTS but not CDMA2000. The 
bug we used in pwn2own lays in CDMA2000 protocol stack. Although the code 
contains the bug, it cannot be triggered.
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We tried to find other bugs by analyzing the balong firmware. Besides the 
leaked source code online, we found that the firmware contains a symbol 
table. In this symbol table, there are function names, function addresses, and 
function sizes. The symbols helped us a lot in understanding the firmware.

Later we upgrade T-Box firmware to E511. The new baseband firmware 
introduced more security mitigations and fixed the bug we used in pwn2own, 
which made it very difficult for us to attack from base band.

4.2.5 GSM hijack

T-Box receives vehicle control commands from a remote server via the cellular 
network. Vehicle control commands can be received by T-Box via HTTPS, 
MQTT, or GSM text messages. T-Box verifies server identifications in HTTPS 
and MQTT. So hijacking vehicle control commands in these two protocols is 
not possible.

T-Box connects to the cellular station via LTE. We can downgrade it to GSM and 
make T-Box connects to our base station. We set up a base station using USRP 
and OpenBTS. After T-Box connected to our station, we can send GSM text 
messages to T-Box.

We analyzed the vehicle control message format and found that the message 
is signed by Mercedes-Benz’s private secret key. And it is authenticated inside 
T-Box. Without the private secret key, we are unable to construct a valid vehicle 

Figure 4.2: symbols in firmware
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control message. We analyzed the cryptography algorithm and did not found 
any weakness.

We then reversed the code and tried to find memory corruption bugs in the 
SMS handling code. However, we did not find exploitable bugs.
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5 Compromise Head Unit

This chapter presents the details of four attack surfaces of head unit in the 
direction from the outside to the internal system, including how we connected 
to the head unit’s intranet by soldering wires on the PCB, how we achieve 
remote code execution in head unit by exploiting the HiQnet protocol and the 
browser. Finally, we will details how to achieve local privilege escalation in head 
unit.

5.1 Access to the Intranet of Head Unit

Head unit exposes at least six internet access interfaces, two Ethernet ports for 
DOIP, two Wi-Fi APs, two Bluetooth tether connections. However, firewall rules 
in head unit are strict. We can only access a few listening TCP or UDP ports on 
these interfaces.

To extend the attack surface, we managed to connect to the intranet of head 
unit.

5.1.1 Connect to Head Unit as T-Box

Head unit and T-Box connects via a hidden WPA2-encrypted 5Ghz Wi-Fi. Head 
unit hosts access point with SSID ”MB Hermes AP xxxxx 5Ghz”, where ”xxxxx” 
is a fixed random number. The passphrase is a 16-byte string with random 
characters.

After head unit and T-Box booted up, T-Box receives SSID and passphrase from 
head unit via CAN bus, then connects to head unit.

However, SSID and passphrase are transmitted as plaintext on CAN bus. As a 
result, it is possible to sniff SSID and passphrase from CAN bus.
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Figure 5.1 shows the SSID and passphrase we captured. We can connect to 
head unit as a T-Box or connect to T-Box as a head unit.

In this way, we were able to connect to more TCP or UDP ports. We also 
found another way to enable more port access, which we will show in the next 
section.

5.1.2 Connect to MMB as CSB

MMB runs a Linux environment, which is the primary system we saw on the 
screen. CSB runs another Linux. MMB and CSB connect via an Ethernet switch 
chip KSZ8895MLU.

We found 4 Ethernet testing points on BB. They are CSB’s Ethernet testing 
points.

Figure 5.1: Captured CAN data

Figure 5.2: Head unit internal network connection diagram
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We removed CSB from head unit and soldered these testing points with an 
RJ45 cable.

By connect the other end of the RJ45 cable to a PC, and assign CSB’s static IP 
address 192.168.210.110 to the PC’s Ethernet interface, we can fake our PC as 
a CSB to MMB.

This enabled many more TCP and UDP access to head unit.

5.2 Remote Code Execution on Head Unit

By faking as CSB, our computer and the interface eth0 of the MMB system 
are in the same subnet 192.168.210.109/30. Since our PC acts as a CSB 

Figure 5.3: Switch chip and Ethernet test point on BB

Figure 5.4: Soldered RJ45 cable to testing points
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system, we can communicate with some services provided by MMB on TCP 
or UDP ports. In Figure 5.5, the result of nmap shows the ports which can be 
connected.

TCP port 3804 interested us because it was assigned to the HiQnet 
protocol developed by HARMAN. The port 3804 was listened on by the 
process AudioManager ,  which was developed by GENIVI. The library 
libplugincontrolinterfacentg6.so is responsible for processing the HiQnet 
protocol on the MMB system, including receiving and processing the HiQnet 
message.

The following subsections will first introduce the HiQnet protocol’s details, then 
explain five vulnerabilities we found in the HiQnet protocol implementation. In 

Figure 5.5: Ports listening on MMB
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the end, the whole vulnerability exploitation process will be shown.

5.2.1 Implementation of HiQnet Protocol

After  read ing  protoco l  documents  and  revers ing  shared  ob ject 
libPluginControlInterfaceNTG6.so, we could understand how the HiQnet 
protocol is implemented in the NTG6 head unit.

HiQnet Message Format

HiQnet Message consists of two parts, Header and Payload. The Programmers 
Guide[10] describes the structure of the Header in Figure 5.6.

Some fields in the Header are as follows:

•  Header Length: The size in bytes of the header.

•  Message Length: The size in bytes of the entire message.

•  Source Address: Where the messages come from.

•  Destination Address: Where the message will be delivered.

•  Message Type: The method that the destination Device must perform. Usually, the 
format of the payload is related to Message Type.

Abstract Objects in HiQnet Protocol

There are many abstract objects in the HiQnet protocol. Clients can modify 
them or change the relationship between them.

Figure 5.6: Format of HiQnet header
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Some of the abstract objects are as follows:

•  Device / Node: Represent the Device or product itself. Consists of many Virtual 
Devices.

•  Virtual Device: A collection of Objects, parameters, and attributes.

•  Object: A collection of parameters.

•  Parameter / StateVariable / Sv: The variables which clients can modify directly. It 
contains lots of Attributes.

•  Attribute: Attributes belongs to Parameter, for example:

The Figure 5.7 shows the relationship between these abstract objects.

ATTRIBUTE ID ATTRIBUTE NAME ATTRIBUTE TYPE CATEGORY

0 Data Type Static

1 Name String STRING Instance+Dynamic

2 Minimum Value Data Type Instance

3 Maximum Value Data Type Instance

4 Control Law Static

5 Flags UWORD Static

Table 5.1: Attributes belongs to Parameter

Figure 5.7: Composing of structure Node
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HiQnet Address

The size of the Address field in the HiQnet Header is six bytes. The Device is 
indexed by the first two bytes. The Virtual Device is indexed by the third byte. 
The Object is indexed by the last four bytes. The Figure 5.8 from Programmers 
Guide[10] shows the format of the HiQnet Address.

The Message Type in HiQnet Protocol

Message Type specifies the method the destination device must perform. In 
NTG6 head unit, the implemented Message Types is shown in Table 5.2:

The Message Type above 0x100 is used to modify these abstract objects.

5.2.2 Vulnerabilities in HiQnet Protocol

The file libplugincontrolinterfacentg6.so receives HiQnet message through TCP 
or UDP ports. In this report, we only introduce the vulnerabilities we tested or 
tried to exploit. Vulnerability 1 exists in the locating stage. Vulnerability 2, 3 
exists in the analyzing stage, The vulnerability 4 and 5 exists in the processing 
stage.

Figure 5.8: HiQnet Addressing
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Vulnerability 1: The Message Length field in Header is not checked

During the locating stage, the function ComPort::processTcpMessage is 
responsible for locating the HiQnet message. It reads the Message Length field 
from the header and calculates the next HiQnet message’s address in memory. 
However, the function does not check if the Message Length field is valid. As 
a result, the attacker can put a large number in this field, resulting in an invalid 
memory address read when the function processes the next HiQnet message. 
Figure 5.9 shows this vulnerability.

MESSAGE TYPE FUNCTION

0 DiscoInfo
2 GetNetworkInfo
4 RequestAddress
5 AddressUsed
6 SetAddress
7 GoodBye
8 Hello

0x10e SetAttributes
0x10d GetAttributes
0x11b SetSvList
0x11c GetSvList
0x11d SetObjectList
0x11e GetObjectList
0x11a GetVdList
0x113 SvSubscribeAll
0x114 SvUnSubscribeAll
0x101 MultiObjectSvSet
0x100 MultiSvSet
0x103 MultiSvGet
0x10c MultiSvSetAttributes
0x10b MultiSvGetAttributes
0x119 DescribeVd

Table 5.2: Message Type NTG6 supported
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Vulnerability 2: The count field in MultiSvGet Payload is not checked

The Message Type MultiSvGet is used by clients to retrieve Sv structures 
belong to Object or Virtual Device. Figure 5.10 shows the structure of payload 
for Message Type MultiSvGet.

During the analyzing stage, the function CHiQnetPayloadMultiSvGet::CHiQnetPay
loadMultiSvGet gets the count field from the payload. The count field represents 
how many Sv IDs are stored in this payload. The function then receives every 
Sv ID from the payload and store them in a pre-allocated buffer whose size is 
0x1420. The Figure 5.11 shows the function of allocating the buffer.

The function CHiQnetPayloadMultiSvGet::CHiQnetPayloadMultiSvGet does not 
check the count field. By setting a large count in this field, a heap overflow can 

Figure 5.9: Vulnerability code snippet of function ComPort::processTcpMessage

Figure 5.10: Payload for Message Type MultiSvGet

Figure 5.11: Code snippet in function CHiQnetMsg::CHiQnetMsg
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be triggered. Figure 5.12 shows this vulnerability.

Vulnerability 3: The count field in GetAttributes Payload is not checked

The Message Type GetAttributes used by clients to retrieve Attributes belongs 
to Object or Virtual Device. This is the structure of the MultiSvGet payload. 
Figure 5.13 shows the structure of payload for Message Type GetAttributes.

During the analyzing stage, the function CHiQnetPayloadGetAttributes::CHiQnet
PayloadGetAttributes get the count field from the payload. The count represents 
how many Sv IDs are stored in this payload. The function gets every Attribute ID 
from the payload and stores them in a pre-allocated buffer whose size is 0x88.

The function CHiQnetPayloadGetAttributes::CHiQnetPayloadGetAttributes does 
not check the count field. By setting a large count in this field, a heap overflow 
can be triggered. Figure 5.14 shows this vulnerability.

Figure 5.12: Vulnerability in CHiQnetPayloadMultiSvGet::CHiQnetPayloadMultiSvGet()

Figure 5.13: Payload for Message Type MultiSvGet GetAttributes
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Vulnerability 4: The count field in MultiSvSet is not checked

The Message Type MultiSvSet  is used by clients to set the value of 
Sv(Parameter) structures belong to Object or Virtual Device.

During the processing stage, the function CHiQnetPayloadMultiSvSet::CHiQnetPa
yloadMultiSvSet initializes the class CHiQnetPayloadMultiSvSet structure based 
on information from payload. The definition of class CHiQnetPayloadMultiSvSet 
shows in Table 5.3:

During the processing stage, the function CHiQnetPayloadMultiSvSet::SetSV
s will continue initializing the class CHiQnetPayloadMultiSvSet structure, then 
set the value of the Parameter. In this process, the function does not check 
the count field in the payload. This means an OOB read will be triggered when 
reading from array param_ID. After that, the function CObject::GetSvByAdr 
returns the pointer points to Sv structure according to Param_ID, and the 

Figure 5.14: Vulnerability in CHiQnetPayloadGetAttributes::CHiQnetPayloadGetAttributes()

OFFSET TYPE COUNT NAME

0x0~0x3FF USHORT 0x200 Param_ID

0x400~0x413

0x414~0x415 USHORT 1 count

0x416~0x417

0x418~0x1417 struct Sv * 0x200 p_Sv

0x1418~0x141F struct Object * 1 p_obj

Table 5.3: Structure CHiQnetPayloadMultiSvSet
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pointer will be stored to array p_Sv, triggers an OOB write after array p_Sv. 
Finally, the pointer p_obj points to Object has tampered with the pointer to Sv 
structure. Figure 5.15 shows this vulnerability.

Vulnerability 5: Type confusion when performing MultiSvSetAttributes

Message Type MultiSvSetAttributes can be used to set the Attributes of Sv.

During the processing stage, clients can decide to modify which Attribute by 
setting the AID in the payload. The Attributes are all stored in the structure 
CStateVariable. The child classes of CStateVariable differs from the type of 
Sv. For example, the type of Sv can be BYTE, WORD, ULONG64, or BLOCK. In 
MultiSvSetAttributes Payload, the clients need to specify the new type and 
new value. If the new type and the old type are different, a type confusion 
vulnerability is triggered.

For example, the size of CSvClassOnOffUByte is 0x58. If the new type in 
payload is 0xA, the function CHiQnetPayloadMultiSvSetAttributes::SetSVsAttr
ibutes shows in Figure 5.16 will consider class CSvClassOnOffUByte as class 
CSvLong64 and call CSvLong64::SetDefaultValue to set the default value of this 
Sv.

The function CSvLong64::SetDefaultValue shown in Figure 5.17 will store 
the new default value to offset 0x60, resulting in an 8-byte heap overflow. 
Therefore, the virtual table pointer of adjacent structures will be tampered with 
a new default value.

Figure 5.15: Vulnerability in CHiQnetPayloadMultiSvSet::SetSVs()

Figure 5.16: Code snippet of CHiQnetPayloadMultiSvSetAttributes::SetSVsAttributes()
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What’s more serious is that, if the new type in the payload is 0x8, the function 
CHiQnetPayloadMultiSvSetAttributes::SetSVsAttributes shown in Figure 
5.18 will consider class CSvClassOnOffUByte as class CSvBlock and call 
CSvBlock::SetDefaultValue to set the default value of this Sv. The type BLOCK 
represents an array of bytes. This means the attacker can write any data with 
arbitrary length to adjacent structures.

5.2.3 Exploit HiQnet Protocol Vulnerability

On the NTG6 head unit, ASLR is enabled, which means the base address of 
libc.so is not fixed, and we need to leak it during the exploit process. The stack 
overflow protection is enabled, but all our vulnerabilities are heap overflow. So, 
the protection won’t stop us from exploiting. Besides, PIE is not enabled on file 

Figure 5.17: Code snippet of CSvLong64::SetDefaultValue()

Figure 5.18: Code snippet of CSvBlock::SetDefaultValue()
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AudioManager. It is convenient for us to use the gadgets in file AudioManager.

All the vulnerabilities mentioned before are heap overflow bugs. Vulnerability 3 
and 5 can be used to tamper with the adjacent structures. This ability can help 
us to leak memory and achieve code execution.

Arbitrary Address Read

In the library libPluginControlInterfaceNTG6.so, the string of Name String is 
stored in structure CHBString::StringData, which is defined as:

The length field represents the length of this string. After length is tampered 
with, the data outside the structure can be leaked, including non-printable 
character.

Besides, the structure CStateVariable is used to store the content of Sv. Table 5.4 
shows the definition:

The pointer p_chbstring corresponds to Attribute Name String, which AID is 1. 
After the pointer is tampered with, the attacker can leak memory data at any 
address.

s t r u c t  _ _ a t t r i b u t e _ _ ( ( a l i g n e d ( 4 ) ) ) 
CHBString::StringData
{
  UInt32 refCnt;
  UInt32 capacity;
  UInt32 size;
  UInt32 length;
  unsigned __int8 charBegin;
  unsigned __int8 charArray[1];
};

OFFSET NAME

0x0 v_pointer

0x8 CHBString::StringData * p_chbstring

...

Table 5.4: Structure CStateVariable
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Achieve Code Execution

Clients can use The Message Type MultiSvGetAttributes to retrieve the 
Attributes, which belong to some Svs. Because class CStateVariable has many 
child classes, the function CHiQnetPayloadMultiSvGetAttributes::Serialize will 
find the appropriate class function from the virtual table. After the virtual table 
is tampered with, the attacker can get the chance to achieve code execution. 
The code is shown in Figure 5.19.

The Exploit Process

To overwrite these two structures for further exploit, the memory layout needs 
to be manipulated. During the analyzing stage and processing stage, buffers 
with many different sizes are allocated, making the heap layout complicated. 
However, there is still a chance to control the heap layout.

Both vulnerability 3 and 5 can be used to exploit. However, for vulnerability 
3, the buffer will be freed after heap overflow, resulting in an unrelated heap 
structure destroyed and a low success rate. Therefore, vulnerability 5 is more 
convenient to exploit, because the OOB write buffer is persistent.

Now, it is the time to explain how to utilize the vulnerability 5.

First, we allocate amounts of CStateVariable and CHBString structures on the 
heap by adding Sv to Object and setting Name String of Sv. We try to make sure 
the size of CStateVariable and CHString are the same by setting the appropriate 
length to Name String. In this way, the structure CStateVariable and CHString 
can be mixed in memory.

Next, we write the BLOCK full of 0xff bytes with length 1 to heap by utilizing the 
vulnerability 5. After that, we retrieve and check all the Name String set before. 

Figure 5.19: Code snippet of CHiQnetPayloadMultiSvGetAttributes::Serialize()
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If all the Name Strings keep unchanged, we add the length of BLOCK by 1 and 
try to overwrite again until one of the Name Strings changes. There are two 
situations:

•  After the length field of CHBString::data is overwritten, The length of Name String 
becomes 0xff. Thus, some memory data adjacent to the original Name String string can be 
leaked.

•  After the last byte of pointer p_chbstring in CStateVariable structure is overwritten, the 
Name String value becomes different totally.

For the first case, it is possible to find a CStateVariable in leaked memory. 
Then we directly overwrite the pointer p_chbstring in this CStateVariable. For 
the second case, the pointer p_chbstring has already been overwritten. So, we 
change the pointer to the address within the GOT section of AudioManager, and 
then the address of function read() in libc.so can be leaked.

We overwrite the same CStateVariable structure again and tamper the virtual 
table with address 0x4A5000. The virtual table is shown in Figure 5.20:

After that, the function am::TAmShTimerCallBack<am::CAmCommonAPIWrapp
er>::Call will be called when performing MultiSvGetAttributes function, which is 
shown in Figure 5.21.

Right now, the 3rd QWORD in CStateVariable is considered as the function 
pointer. The 2nd QWORD p_chbstring is considered as the parameter. The 4th 
QWORD is considered as an extra offset to the parameter.

Before triggering code execution, we overwrite the 3rd QWORD in CStateVariable 
to the address of function system(), set 2nd QWORD by resetting the Name 

Figure 5.20: Virtual table of class TAmShTimerCallBack<am::CAmCommonAPIWrapper>
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String to arbitrary Linux command, and overwrite the 4th QWORD to 0x11 to 
bypass the header of CHBString::data.

Finally, We can get the reverse shell and run command on the Linux system, 
showed in Figure 5.22.

Exploit Head Unit without Firmware

The real attack scenario could be to get a shell from the head unit without 
firmware. In this situation, the virtual table’s address, which contains the 
function am::TAmShTimerCallBack<am::CAmCommonAPIWrapper>::Call, is 
unknown. Also, the offset between read() and system() is unknown. However, 
if the CHBString::data structure remains the same, it is still possible to 
dump all the memory in process AudioManager, including code segment of 
AudioManager and libc.so. Therefore, it is possible to get the address of virtual 
address and the offset to system(). The whole exploit process is universal even 
for the head unit without firmware.

5.3 Exploit the Browser

Head unit supports a browser application for the driver and passengers on the 
touch screen. We can exploit the browser’s vulnerability to get a remote shell of 
head unit on actual vehicle.

Figure 5.22: Reversed shell from head unit AudioManager process

Figure 5.21: Function am::TAmShTimerCallBack<am::CAmCommonAPIWrapper>::Call
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5.3.1 QtWebEngine

In NTG6 head unit, the process /opt/comm/browser/bin/DevCtrlBrowser is 
responsible for running the browser application. The result of ldd command 
in Figure 5.23 shows that the browser’s UI is designed based on Qt5. The web 
engine of the browser is Qt5WebEngine.

According to official documents, V8 is the javascript engine used by 
QtWebEngine. Also, the actual process of QtWebEngine is QtWebEngineProcess, 
and the render process is a child process of this process. So, a javascript 
engine vulnerability can help us get a shell from the head unit with browser_f 
user privilege.

5.3.2 Exploit the QtWebEngine

We confirmed that a type confusion vulnerability in V8  also affects 
QtWebEngine. This vulnerability is related to optimization features of Array 
items, resulting in leaking the address of Object in the array as float or setting 
the address of Object in an array with float.

By utilizing this vulnerability, we can execute the shellcode in the browser 
process of head unit and get a reverse shell from the head unit with user 
browser_f privilege. Figure 5.24 shows the privilege of reverse shell and version 
of the head unit.

Figure 5.23: Libraries used by DevCtrlBrowser

Figure 5.24: Reversed shell
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5.4 Local Privilege Escalation

For the reverse shell from AudioManager service and browser, the privilege is 
very limited.

In the audiovideo user context we can do nothing except the audio or 
video related operations. Below is AudioManager’s systemd unit file audio 
manager.service(parts are omitted for clarity). From the file, we can see that 
some restrictions are enabled on the service. These restrictions did limit 
AudioManager’s capabilities.

But we found that fine-grained access control mechanism like SELinux or 
AppArmor is not enabled in this system. This extended the attack surface. We 
used a bug in Linux kernel perf subsystem to escalate our privilege. Usually, 
SELinux is enabled on Android. So, the perf subsystem is not accessible by 
unprivileged users.

5.4.1 Kernel LPE with A perf Bug

The version of Linux kernel in the system is 3.18.71, which was released on 

PermissionsStartOnly=true

# application sandboxing
# DAC
#As a WAR we change the permissions for these MSG queues, so AudioManager is still able to access them 
after it is restarted by systemD
ExecStartPost=-/bin/chmod 660 /dev/mqueue/AudioManagerLevelingDataMsgQ
ExecStartPost=-/bin/chmod 660 /dev/mqueue/AudioManagerResponseMsgQ
ExecStartPost=-/bin/chgrp audio /sys/kernel/debug/tegra_ape/adsp_lpthread/adsp_usage
ExecStartPost=-/bin/chmod g+w /sys/kernel/debug/tegra_ape/adsp_lpthread/adsp_usage

# ACL
ExecStartPre=-/usr/bin/setfacl -m u:audiovideo:rw /dev/cmdfifo /dev/rspfifo
ExecStartPre=-/usr/bin/setfacl -R -m u:audiovideo:rwx /var/opt/ent/audio/
# CAP

Slice=audio.slice
User=audiovideo
Group=entertain
UMask=0007
SupplementaryGroups=dltgrp thriftgrp k2lgrp evlog hsbgrp audio
CapabilityBoundingSet=CAP_SYS_RESOURCE CAP_IPC_LOCK CAP_SYS_NICE
NoNewPrivileges=false
DevicePolicy=closed
DeviceAllow=/dev/cmdfifo rw
DeviceAllow=/dev/cmdfifo rw
DeviceAllow=/dev/mqueue/* rwm
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14 Sep, 2017[11]. It’s lagging more than three years from today(2020). So it’s 
vulnerable to many security bugs that were fixed in these three years. And 
what’s worse, the 3.18 branch is not maintained anymore by upstream[12].

The bug we chose to exploit was a bug in perf subsystem, which has two fixes. 
The first fix is an uncompleted fix, which assigned CVE-2016-6786 [13]. This fix 
has been applied in this kernel. But there’s a second unapplied fix CVE-2017-
6001 [14].

Without the second fix, the bug is still exploitable.

5.4.2 CVE-2017-6786,6001

KeenLab published the bug analysis and exploit method in PACSEC [15]. Exploit 
steps in PACSEC are:

•  Trigger race condition in move_group to cause UAF.

•  Freeze with futex_wait_queue_me() to avoid kernel Oops.

•  Spray heap with ret2dir. Filling malformed perf_event_context_object.

•  Wake frozen task with futex_wake() and hijack control flow.

In the head unit, exploit steps need to be adjusted because of Cgroups 
restriction.

5.4.3 Bypass Cgroups Restriction

After running our exploit inside the spawned shell from AudioManager, the 
exploit was killed by OOM killer in ret2dir heap spray stage.
[  621.446516] a.out invoked oom-killer: gfp_mask=0x200d2, order=0, oom_score_adj=0
[  621.446538] CPU: 2 PID: 10420 Comm: a.out Tainted: G           O   3.18.71 #1
[  621.446544] Hardware name: t186-vcm31-cuba (DT)
[  621.446549] Call trace:
[  621.447144] [<ffffffc0000895d4>] dump_backtrace+0x0/0x130
[  621.447152] [<ffffffc000089718>] show_stack+0x14/0x1c
[  621.447168] [<ffffffc00088ab78>] dump_stack+0x8c/0xac
[  621.447176] [<ffffffc0001602f0>] dump_header.isra.12+0x98/0x1d8
[  621.447182] [<ffffffc000160914>] oom_kill_process+0x298/0x41c
[  621.447189] [<ffffffc0001b2c44>] mem_cgroup_oom_synchronize+0x610/0x618
[  621.447195] [<ffffffc000161020>] pagefault_out_of_memory+0x14/0x74
[  621.447201] [<ffffffc00009be5c>] do_page_fault+0x474/0x478
[  621.447207] [<ffffffc0000812dc>] do_mem_abort+0x58/0xd4
[  621.447210] Task in /audio.slice killed as a result of limit of /audio.slice
[  621.447223] memory: usage 1023984kB, limit 1024000kB, failcnt 89981
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From the log, we can find that the memory size of audio.slice is limited to 1GB. 
After some experiments, we figured out that, to successfully spray with ret2dir, 
we need to allocate at least 2GB memory in this 8GB system. So we switched 
our ret2dir spray method to a traditional kmalloc spray method.

Memory limit is not the only restriction by Cgroups. We found our spawned 
shell was killed in about 1 minute, even when we escalate our process to root 
or change its parent to init.

systemd tracks service forks using Cgroups. systemd will restart AudioManager 
service if it’s not responding for some time. systemd kills all the children in 
audio Cgroups. To prevent our shell from being killed, we moved our shell’s 
process out of audio Cgroups with the following command:

[  621.447227] memory+swap: usage 1023984kB, limit 18014398509481983kB, failcnt 0
[  621.447231] kmem: usage 0kB, limit 18014398509481983kB, failcnt 0
[  621.447235] Memory cgroup stats for /audio.slice: cache:988792KB rss:35192KB rss_huge:0KB mapped_file:988688KB 
writeback:0KB swap:0KB inactive_anon:988616KB active_anon:35320KB inactive_file:8KB active_file:8KB unevictable:0KB
[  621.447262] [ pid ]   uid  tgid total_vm      rss nr_ptes swapents oom_score_adj name
[  621.447321] [ 2507]  1028  2507     5361      333       8        0             0 osmsg_logger
[  621.447335] [ 2562]  1028  2562     5351      316       7        0             0 avtp_2_socket
[  621.447341] [ 2583]  1028  2583    68502     2068      20        0             0 dev-ioamp-route
[  621.447375] [ 3418]  1028  3418   610116     5001      94        0             0 AudioManager
[  621.447383] [ 3578]  1028  3578   348048     2538      60        0             0 Audio
[  621.447388] [ 3580]  1028  3580   280069     2289      36        0             0 AcousticFeedbac
[  621.447395] [ 3589]  1028  3589    40554      868      12        0             0 avtp_2_alsa
[  621.447421] [ 3807]  1028  3807   141016     1515      29        0             0 hdcp_hsvlctl
[  621.447446] [ 4729]  1028  4729   277446     1749      36        0             0 Ringtone
[  621.447474] [ 4792]  1028  4792   217347     1654      40        0             0 AVDiagEngCtrl
[  621.447484] [ 4829]  1028  4829   157720     3165      32        0             0 audio_swdl
[  621.447489] [ 4847]  1028  4847    66582     1996      24        0             0 ar_diag
[  621.447584] [ 5051]  1028  5051   264318     3038      51        0             0 inCarCommunicat
[  621.447605] [ 5345]  1028  5345   125913     2368      29        0             0 handsfreethrift
[  621.447642] [ 6856]  1028  6856      761      486       5        0             0 sh
[  621.447647] [ 6862]  1028  6862      465       96       3        0             0 cat
[  621.447653] [ 6863]  1028  6863    21094      128       6        0             0 dlt-adaptor-std
[  621.447661] [ 7740]  1028  7740      465       93       4        0             0 cat
[  621.447675] [ 7741]  1028  7741      771      115       5        0             0 nc
[  621.447680] [ 7742]  1028  7742      842      536       5        0             0 sh
[  621.447686] [ 7746]  1028  7746      460       20       3        0             0 tshd-arm64
[  621.447691] [ 7766]  1028  7766      557      385       4        0             0 tshd-arm64
[  621.447698] [ 7767]  1028  7767      906      643       4        0             0 bash
[  621.447713] [10420]  1028 10420   250299   247327     486        0             0 a.out
[  621.447719] Memory cgroup out of memory: Kill process 10420 (a.out) score 968 or sacrifice child

echo $SHELL_PID > /sys/fs/cgroup/systemd/tasks
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Then we can have a stable reverse shell with root privilege.

For exploiting from browser privilege, there is no cgroup restriction.
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6 Post Attack in Head Unit

This chapter lists what we can do after obtained the root privilege in head unit. 
For example, how to unlock vehicle function, unlock anti-theft protection, and 
perform vehicle control actions from head unit.

6.1 Anti-Theft Unlock

Process frontend controls UI displayed on the screen. And process SysAct 
handles Anti-Theft status changes and notifies all other programs in the 
system.

By inspecting DLT log, we found that SysAct will send Anti-Theft status to 
frontend.

By searching string literals in file SysAct, we found a relevant function.

Figure 6.1: Anti-Theft DLT log
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Function in Figure 6.2 handles Anti-Theft status changes. Function sub 486140 
returns the actual Anti-Theft status.

We patched it to make it always return 2, which is the UNLOCK status.

We overwrite the original SysAct with this patched SysAct, and restart the head 
unit. Anti-Theft UI layer disappeared.

Figure 6.2: Anti-Theft status change handing function

Figure 6.3: Function sub 486140

Figure 6.4: Anti-Theft layer disappeared



48

C H A P T E R  6 :  P O S T  A T T A C K  I N  H E A D  U N I T

6.2 Unlocking Vehicle Functions

In Anti-Theft mode, functions like navigation, CarPlay, CarLife are disappeared. 
Even if Anti-Theft is unlocked, they will not show up.

We can activate these functions with DLT injection. DLT daemon listens on port 
3490. Using the tool dlt-viewer, we can invoke DLT injection callbacks on the 
system.

SysAct registered DLT injection callback with function dlt_register_injection _
callback. Passing Service ID 0x1011 and device key as Data will invoke a 
callback to unlock vehicle functions. The device key can be found via the 
diagnostic tool.

On some head units, the device key is deleted. We can bypass device key 
verification by patching SysAct binary. We locate the code by searching string 
literal in Figure 6.6. By patching the if condition, we can bypass device key 
verification.

Figure 6.5: DLT injection dialog

Figure 6.6: Code for verifying device key
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6.3 Engineering Mode

There are two hidden menus in NTG6 head unit.

One is called ’Dealer Mode’. It can be easily opened by pressing combination 
keys on the touchpad or clicking a specific touch screen area. In this mode, 
there are various submenus mostly to view the status of the vehicle. It did not 
give much useful information or functions to us.

There is another mystery menu called ’Engineering Mode’. We found some 
videos about how to open this menu on ancient Mercedes-Benz models. But 
we did not found anyone mentions this menu on the newest vehicle model we 
were working on. But we believed there should be such a menu on this system.

We searched the file system we dumped for clues about this menu. We found 
there is a folder contains information about UI. There is a README.md file that 
describes keys to open various menus. But the keys are all PC keyboard keys. 
We tried to connect a USB keyboard to the head unit. But head unit says it does 
not support this kind of device.

Figure 6.7: Dealer Mode menu
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At that time, we already had a shell of the head unit. So we patched the 
system to make it accepts a USB keyboard. We also patched system binaries 
to make the system accept key input events. We tried keys the README.md 
file described and most of the keys work except key ’E’, which is used to open 
’Engineering Mode’.

Figure 6.8: part of README.md file
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Then we analyzed more UI binary codes. We found to open this menu, a vehicle 
function must be activated first. We activated this with the same method we 
activated CarPlay and other functions.

After activation, we finally got ’Engineering Mode’ opened. In this menu, more 
functions are provided to tweak the head unit parameters, including variant 
coding.

6.4 Persistent Backdoor

Leaving a backdoor in the car can be more convenient for future testing. Disk 
integrity protection like dm-verity is not enabled in this system. So we can 
remount the root partition to make it writable and leave a persistent backdoor. 
By adding commands to a startup script, our backdoor will execute during 
boot.

6.5 Display Screen Tampering

Figure 6.9: Engineering Mode menu

mount -o rw,remount /
cp /tmp/backdoor /usr/sbin/
echo -e ’\n/usr/bin/backdoor’ >> /usr/sbin/configure_broadcom.sh
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On NTG6 head unit, the MMB broad runs two Linux systems based on 
virtualization provided by Nvidia. The primary Linux system and the display 
server. The display server’s IP is 192.168.210.121. The main Linux system’s 
IP of interface hv0 is 192.168.210.122. On primary Linux system, the process 
frontend is designed based on Qt5. The rendered graphic data by frontend 
will be transferred to display server and finally display on the right half screen. 
Similarly, the process icman is responsible for rendering the images on the left 
half screen.

In our test, we replaced frontend and icman with our custom compiled binary 
based on Qt. We should then set an appropriate environment variable to 
transfer the graphic image to the display server by the libraries. The commands 
is as follows.

Finally, our custom images will display on the touchscreen. Shown in Figure 6.10

kill -9 ‘pidof frontend‘;
export PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin export NOTIFY_SOCKET=/run/
systemd/notify
export WATCHDOG_PID=4269
export WATCHDOG_USEC=45000000
export HOME=/home/hmi
export LOGNAME=hmi
export USER=hmi
export SHELL=/sbin/nologin
export LD_LIBRARY_PATH=/tmp/:/opt/hmi/lib export EGLSTREAM_INI_DIR=/etc
export QT_QPA_PLATFORM=eglfs
export QT_QPA_EGLFS_CONNECTOR_ID=0 export QT_QPA_EGLFS_PLANE_ID=2
export QSG_TRANSIENT_IMAGES=1
export QV4_MM_OVERALLOCATION=50
export QV4_MM_MAXBLOCK_SHIFT=1
export QV4_MM_MAX_CHUNK_SIZE=65536 export DISPLAY_VM=1
export DISPLAY_IP=192.168.210.121 /tmp/show_keen_logo

Figure 6.10: Custom images



53

C H A P T E R  6 :  P O S T  A T T A C K  I N  H E A D  U N I T

6.6 RH850 Denial of Service

In MMB, /dev/ttyTHS3 is one of RH850 controlling serial port. We uploaded the 
GNU screen to the MMB system and opened this serial port with command 
screen /dev/ttyTHS3 115200. A warning displays on the screen, and the system 
reboots after 10 seconds. We can trigger this reboot to achieve a DoS attack.

6.7 Perform Vehicle Control Actions

After compromising the head unit, we were interested in how to perform 
car control actions. Usually, the direct method is to send CAN messages to 
Interior CAN (CAN-B) from head unit. But, for Mercedes-Benz A200L cars, the 
architecture is more complicated.

On the Base Board of the head unit, there is an RH850 chip R7F7015223. It is 
responsible for transmitting CAN messages to User interface CAN (CAN-HMI ). 
The chip connects to the host CPU through serial and runs an RTOS with library 
LWIP. The host CPU communicates with RH850 through a virtual Ethernet 
interface based on PPP over serial. Then, many processes will establish lots of 
TCP connections between the host CPU and RH850.

Figure 6.11: Notification before reboot
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First, we need to figure out how to send arbitrary CAN messages on CAN-
HMI. This requirement can be satisfied by finding the packet format of sending 
arbitrary CAN messages if the RH850 chip supports this function or trying to 
compromise RH850, for example, upgrading a custom firmware.

Second, we may need to compromise the gateway Electronic Ignition 
Switch(EIS), because EIS acts as a firewall which drops insecure CAN message. 
After that, the compromised EIS can transfer this unsecured CAN message 
from CAN-HMI to CAN-B.

We can see that it is a long way to send arbitrary CAN messages to CAN-B. In 
contrast, we chose a more direct approach to prove we compromised head 
unit. On Mercedes-Benz A200L cars, there is a voice control system. Driver and 
passengers can directly control the vehicle by speaking. Audio is processed 
by head unit, then a vehicle control command sent to RH850 from some 
processes. However, we already compromised the head unit. We can directly 
send the vehicle control commands to RH850 as if there is a voice control 
request.

To verify our thought, we captured all the TCP packets sent to RH850 while 
performing vehicle control actions. Finally, we got the TCP packets from a 
TCP connection sent by process k2lacsdaemon. Injecting code into process 
k2lacsdaemon and replaying these packets can trigger the specified vehicle 
control actions. The vehicle control actions we successfully triggered and the 
TCP packets are shown in Table 6.1.



55

C H A P T E R  6 :  P O S T  A T T A C K  I N  H E A D  U N I T

ACTION PACKET IN HEXADECIMAL

open ambient light

00 00 00 1f .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3f 3f
00 00 00 1f .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3f 3f
00 00 00 1f .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3f 3f
00 00 00 1f .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3f 3f

close ambient light

00 00 00 1f .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3f 3f
00 00 00 1f .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3f 3f
00 00 00 1f .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3f 3f
00 00 00 1f .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3f 3f

open driver reading light 00 00 00 17 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3f 00
close driver reading light 00 00 00 17 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3f 00

open passenger reading light 00 00 00 17 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 7f 00
close passenger reading light 00 00 00 17 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3f 00

open sunshade cover 00 00 00 15 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3f 3f
open back-seat passenger light 00 00 00 17 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3f 00
close back-seat passenger light 00 00 00 17 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3f 00

Table 6.1: TCP packets for vehicle controls
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7 Compromise T-Box

This chapter shows two attack attempts for two attack surfaces, the Wi-Fi and 
CAN bus of T-Box in the direction from the outside to the internal system.

7.1 Compromise Host from Wi-Fi chip

To compromise the host system from Wi-Fi chip in a real attack case, an 
attacker need to achieve code execution on Wi-Fi chip first. For research 
purposes, we can also load a custom firmware to run our code on the Wi-Fi 
chip.

We loaded our custom firmware bcm_firmware_H2.bin on T-Box for reproducing 
the attack process by Project Zero’s research. The firmware will try to overwrite 
the host physical memory beginning from address 0xA59E8000, which 
corresponds to kernel address 0xC00E8000.

The original kernel code snippet shows in Figure 7.1.

After the attack, the crash log on serial is shown in Figure 7.2.

Figure 7.1: Original code of kernel
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The result shows that the normal kernel code already tampered with some 
structures or wireless packets by Wi-Fi chip. So, the T-Box is also vulnerable to 
the same DMA issue found by Project Zero.

Since the kernel code can be modified, this issue can be used to compromise 
the T-Box host system from a compromised Wi-Fi chip.

We have successfully verified this attack on version E311.4.

7.2 Trigger Memory Corruption From SH2A Chip

On T-Box, the blockIpcServer communicates with SH2A through the serial /dev/
ttyAMA1. During the communication between the process blockIpcServer and 
SH2A chip, there is a concept called channel on both sides of SH2A firmware 
and the Linux system.

Figure 7.2: The crash log of kernel
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7.2.1 Message Format between SH2A MCU and Host

The message packet between SH2A MCU and Host consists of header and 
body.

The size of the header is 8 bytes, and its format is shown in Figure 7.3:

The first two bytes are fixed. The 6th byte is the length of the payload. The 7th 

byte represents the channel number of this packet.

The format of payload varies by the number of channels.

7.2.2 Out-of-bound Vulnerability in RemoteDiagnosis

The process RemoteDiagnosisApp registered channel 10 RemoteDiagnosis with 
blockIpcServer. There is a vulnerability when the process RemoteDiagnosisApp 
parses the payload of channel 10 sent by SH2A MCU and transferred by 
blockIpcServer. The payload of channel 10 is shown in Figure 7.4:

An array OOB read exists in function get_ovci_chn, which is shown in Figure 7.5.

Figure 7.3: Header of packet transmit in channel

Figure 7.4: Format of payload for channel RemoteDiagnosis

Figure 7.5: Code snippet triggers OOB read
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The size of the array chn_table is 88. Therefore, if the argument idx is above 88, 
an OOB read happens.

The table array chn_table contains the channel index related to the ovci index. 
This means the result returned from function get_ovci_chn() may be above 1, 
according to the data outside the array.

Then the ovci_data is stored in the ovci_data_area array, resulting in an OOB 
write. The code to trigger OOB write shows in Figure 7.6.

According to the memory layout, some structures and pointers can be 
overwritten outside the array chn_table. On T-Box version E511.6, pointers are 
more random than version E334.2 since ASLR is enabled on version E511.6. We 
didn’t try to exploit this vulnerability on version E511.6.

Figure 7.6: Code snippet that triggers OOB write
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8 Post Attack in T-Box

This chapter will introduce two attack processes that target the SH2A MCU on 
T-Box. The SH2A chip is responsible for transmitting CAN messages to CAN-D 
CAN bus. By utilizing the vulnerabilities in SH2A firmware, we can send arbitrary 
CAN messages to CAN-D CAN bus and flash a custom firmware on SH2A MCU.

The precondition for both attacks that we will present is that the attacker 
should compromise the T-Box’s Linux system first. In our research, we failed 
to find a vulnerability to compromise the Linux system. However, we managed 
to get a development version of T-Box hardware with debug shell enabled. The 
need to actively gain code execution on the NAD prevented this vulnerability 
from being exploited in a production car.

8.1 Sending Arbitrary CAN message from T-Box

This section will introduce the CAN message transmission logic on T-Box and 
the vulnerability in SH2A firmware. We will explain what we can do by utilizing 
this vulnerability, including transmitting arbitrary CAN messages on T-Box and 
bypassing firmware code signing during upgrading.

8.1.1 CAN Bus Message Transmit Logic

On T-Box Board, the SH2A chip connects to the CAN bus CAN-D, which 
connects to the gateway EIS and OBD diagnostic port. The SH2A chip connects 
to the host CPU through serial. Therefore, the SH2A chip is responsible for 
receiving the message from the host CPU, converting the message from the 
host CPU to the CAN message, and transmitting the CAN message on CAN 
bus, for our car CAN-D.

In the Linux system, the device file /dev/ttyAMA1 represents this serial port. 
It is always opened by the process blockIpcServer. This process acts as an 
IPC server and communicates with other client processes through Boost IPC 
shared memory. For example CANDL, UpdateManager, DiagnosisProxyApp, 
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RemoteDiagnosisApp, etc. So, when the client processes want to send CAN 
message, they send the message to blockIpcServer. Then, the message is 
transferred to the SH2A chip. Finally, the chip constructed the CAN message 
and transmitted it to CAN bus via CANTP protocol.

The chip configures different CAN IDs according to the channel number of the 
message received from the serial. Once the client process is launched, they 
will register the channel number with blockIpcServer. Then, blockIpcServer will 
deliver the message to the corresponding client process. On the SH2A chip, 
there should be a table that describes the correspondence between CAN ID 
and channel number.

The following analysis is based on the firmware version shown in Table 8.1:

8.1.2 Vulnerability in SH2A Firmware

The SH2A firmware will process the message from host. In our research, we 
found a vulnerability when the firmware process the the payload for a specific 
channel.

The vulnerability is that the function does not check the length field in the 
payload, resulting in a stack overflow when function memcpy() copies data with 
a considerable length.

By utilizing the vulnerability, we successfully achieved code execution in the 
chip. The most important is that we managed to make our shellcode run more 
stable. Therefore, after our shellcode finish running, the chip still works well 
instead of crashes.

PARTS VERSION

Software Part Number 2479026602

TCU Core E334.2

SH2 18232C

Table 8.1: Version of T-Box firmware
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8.1.3 Transmit Arbitrary CAN Message to CAN Bus

Since we got code execution in SH2A chip, it is possible to transmit arbitrary 
CAN messages to CAN bus. Our shellcode will configure the CAN interface 
registers on Channel 1 Mailbox 31 to transmit CAN message to CAN bus.

Figure 8.1 shows the result. It proved that it is possible to transmit arbitrary 
CAN messages on T-Box.

8.2 Flashing Custom Firmware on SH2A MCU

A common practice to transmit arbitrary CAN messages is upgrading 
the firmware of the MCU with patched firmware. To prevent upgrading a 
custom firmware, more and more system designers introduced the code 
signing mechanism. On T-Box, we also found the code signing mechanism is 
introduced on newer firmware of SH2A MCU, for example, E409.6 and E511.6. 
On these versions, there is a signature attached to the files uHERMES.bin and 
uapp.bin. This subsection will introduce the issues related to the firmware only 
supports the code signing mechanism. An attacker can use the first issue to 
flash an older firmware and exploit the vulnerability in this older firmware to 
flash a custom firmware.

The following analysis based on these firmware versions shown in Table 8.2:

Figure 8.1: Arbitrary CAN message transmitted
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8.2.1 Firmware Downgrade Vulnerability

The process UpdateManager is responsible for upgrading the firmware of SH2A 
MCU by communicating with SH2A MCU through the channel BIPC_SWDL_SH2. 
In file UpdateManager of version E511.6, the function at 0x83b38 is response 
for upgrading SH2A BIOS(uapp.bin) and SH2 Application(uHERMES.bin). We 
tried downgrading SH2A firmware from 19472B to 18514B. The 19472B version 
SH2A firmware verifies that the signature of 18514B version SH2A firmware 
is valid because the RSA public keys in these two versions are the same. But 
there is no version checking during upgrading on version 19472B, resulting in a 
firmware downgrade attack. The upgrade log is shown below:

SH2 VERSION TCU CORE VERSION VERSION

18514B E409.6 2479027703

19472B E511.6 2479022604

Table 8.2: Version of T-Box firmware

Aug 25 22:10:43.035 UpdateManager[1157]:  [info:] Updating SH2 applications...
Aug 25 22:10:43.037 UpdateManager[1157]:  [info:] File read successfully. Size 530848
Aug 25 22:10:43.038 UpdateManager[1157]:  [info:] ---------------- START SH2 session ----------------
Aug 25 22:10:43.038 UpdateManager[1157]:  [info:] Open IPC channel for SWDL
Aug 25 22:10:43.039 UpdateManager[1157]:  [info:] Send message "start"
Aug 25 22:10:43.042 UpdateManager[1157]:  [info:] Send chunk size 1024
Aug 25 22:10:43.044 UpdateManager[1157]:  [info:] Send file size 530848
Aug 25 22:10:43.046 UpdateManager[1157]:  [info:] Send write address 0x00000016
Aug 25 22:10:43.049 UpdateManager[1157]:  [info:] Sending firmware file
Aug 25 22:10:43.049 UpdateManager[1157]:  [info:] SH2 image 0% complete
Aug 25 22:10:45.780 UpdateManager[1157]:  [info:] SH2 image 5% complete
Aug 25 22:10:48.888 UpdateManager[1157]:  [info:] SH2 image 10% complete
Aug 25 22:10:51.618 UpdateManager[1157]:  [info:] SH2 image 15% complete
Aug 25 22:10:54.732 UpdateManager[1157]:  [info:] SH2 image 20% complete
Aug 25 22:10:57.455 UpdateManager[1157]:  [info:] SH2 image 25% complete
Aug 25 22:11:00.582 UpdateManager[1157]:  [info:] SH2 image 30% complete
Aug 25 22:11:03.311 UpdateManager[1157]:  [info:] SH2 image 35% complete
Aug 25 22:11:06.440 UpdateManager[1157]:  [info:] SH2 image 40% complete
 1157  0   0% S     9  23304K   4912K     root     /cust/app/bin/UpdateManager
Aug 25 22:11:09.166 UpdateManager[1157]:  [info:] SH2 image 45% complete
Aug 25 22:11:12.243 TrigLogFiles[772]:  [info:] Process UpdateManager thread count 9
Aug 25 22:11:12.306 UpdateManager[1157]:  [info:] SH2 image 50% complete
Aug 25 22:11:15.038 UpdateManager[1157]:  [info:] SH2 image 55% complete
Aug 25 22:11:18.168 UpdateManager[1157]:  [info:] SH2 image 60% complete
Aug 25 22:11:20.887 UpdateManager[1157]:  [info:] SH2 image 65% complete
Aug 25 22:11:23.507 UpdateManager[1157]:  [info:] SH2 image 70% complete
Aug 25 22:11:26.497 UpdateManager[1157]:  [info:] SH2 image 75% complete
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8.2.2 Bypass Code Signing Check During Upgrading

During upgrading, the u-boot format files: uHERMES.bin and uapp.bin will be 
uploaded to SH2A MCU. Then SH2A MCU will verify the signature of the image. 
Specifically, the SH2A MCU will decrypt the signature with the RSA public 
key and compare the decrypted result with the image’s sha256 hash. For the 
18514B version uHERMES.bin, the verified result is shown below:

Aug 25 22:11:29.108 UpdateManager[1157]:  [info:] SH2 image 80% complete
Aug 25 22:11:32.012 UpdateManager[1157]:  [info:] SH2 image 85% complete
Aug 25 22:11:34.653 UpdateManager[1157]:  [info:] SH2 image 90% complete
Aug 25 22:11:37.675 UpdateManager[1157]:  [info:] SH2 image 95% complete
Aug 25 22:11:40.268 UpdateManager[1157]:  [info:] SH2 image 100% complete
Aug 25 22:11:42.876 UpdateManager[1157]:  [info:] ---------------- END SH2 session ----------------
Aug 25 22:11:44.877 UpdateManager[1157]:  [info:] Updating SH2 BIOS...
Aug 25 22:11:44.877 UpdateManager[1157]:  [info:] File read successfully. Size 103840
Aug 25 22:11:44.877 UpdateManager[1157]:  [info:] ---------------- START SH2 session ----------------
Aug 25 22:11:44.877 UpdateManager[1157]:  [info:] Open IPC channel for SWDL
Aug 25 22:11:44.877 UpdateManager[1157]:  [info:] Send message "start"
Aug 25 22:11:44.880 UpdateManager[1157]:  [info:] Send chunk size 1024
Aug 25 22:11:44.883 UpdateManager[1157]:  [info:] Send file size 103840
Aug 25 22:11:44.885 UpdateManager[1157]:  [info:] Send write address 0x0000000B
Aug 25 22:11:44.885 UpdateManager[1157]:  [info:] Sending firmware file
Aug 25 22:11:44.885 UpdateManager[1157]:  [info:] SH2 image 0% complete
Aug 25 22:11:45.364 UpdateManager[1157]:  [info:] SH2 image 5% complete
Aug 25 22:11:45.821 UpdateManager[1157]:  [info:] SH2 image 10% complete
Aug 25 22:11:46.677 UpdateManager[1157]:  [info:] SH2 image 15% complete
Aug 25 22:11:47.139 UpdateManager[1157]:  [info:] SH2 image 20% complete
Aug 25 22:11:47.605 UpdateManager[1157]:  [info:] SH2 image 25% complete
Aug 25 22:11:48.067 UpdateManager[1157]:  [info:] SH2 image 30% complete
Aug 25 22:11:48.918 UpdateManager[1157]:  [info:] SH2 image 35% complete
Aug 25 22:11:49.381 UpdateManager[1157]:  [info:] SH2 image 40% complete
Aug 25 22:11:49.842 UpdateManager[1157]:  [info:] SH2 image 45% complete
Aug 25 22:11:50.292 UpdateManager[1157]:  [info:] SH2 image 50% complete
Aug 25 22:11:51.154 UpdateManager[1157]:  [info:] SH2 image 55% complete
Aug 25 22:11:51.613 UpdateManager[1157]:  [info:] SH2 image 60% complete
Aug 25 22:11:52.065 UpdateManager[1157]:  [info:] SH2 image 65% complete
Aug 25 22:11:52.530 UpdateManager[1157]:  [info:] SH2 image 70% complete
Aug 25 22:11:53.412 UpdateManager[1157]:  [info:] SH2 image 75% complete
Aug 25 22:11:53.859 UpdateManager[1157]:  [info:] SH2 image 80% complete
Aug 25 22:11:54.325 UpdateManager[1157]:  [info:] SH2 image 85% complete
Aug 25 22:11:55.186 UpdateManager[1157]:  [info:] SH2 image 90% complete
Aug 25 22:11:55.633 UpdateManager[1157]:  [info:] SH2 image 95% complete
Aug 25 22:11:56.087 UpdateManager[1157]:  [info:] SH2 image 100% complete
Aug 25 22:11:58.640 UpdateManager[1157]:  [info:] ---------------- END SH2 session ----------------

PublicKey(38990162527143653598206405503588261367090651735139171091123904246849069176160665864743420596903127446691269669
01890463776089179396118208091597174510582150600243617897873812571846336406344135322839072671118284209784327134213139294
72229664816191354634180564266158377616818162781828911595177876057401702279974659713149443739048023404441945562072661204
44638203597323297053899424906965598730996084793987320597909782240653274121177799419549657089553790790149942954072518193
10154726845731935204239811068748652991412193990184233025245543906372741226199119822180684959022565886463174914665332939
24542518487115217655985900178703599434292773247822580151522875666168828439169056370275503811204568762921500059122136079
85863942100673321891674402573097922160165782700169740115850698065421564279817089059175579551810912955912032418837353938
37725972174327987885303186945382814292158131717484266882863584856044460212891225508189414697758273973, 65537)
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In the subsection 8.1, we utilized a vulnerability to achieve code execution. 
We can also use this vulnerability to bypass the code signing check while 
upgrading and flash a custom firmware. The u-boot file uHERMES.bin will be 
loaded to address 0x3C000000 after SH2A MCU booted. The address is the 
start of Large-Capacity RAM shown in Figure.8.2. The memory is writeable 
and cache-disabled. So, it is possible to modify the code segment in memory 
directly.

First, we trigger the vulnerability to achieve code execution on SH2A MCU by 
sending payload from Linux to serial ttyAMA1. Then, in our exploit, we patched 
the instruction’s opcode at 0x3c052a34 in Figure 8.3 from ”e6 20” to ”e6 00” to 
bypass the comparison between sha256 hash and RSA decrypt result. After 
that, arbitrary custom firmware can be upgraded successfully.

Signature: 101216183547073293254412974757680279738917718933794752666298208307394634586958614151225530497101112981190398
7719454415786295596308522 681344892458421403726260770083706381720784801004067396377397560773918928259194126438455714071
2519547594143781510220874627791182740503 417364284654490669124716546891733527862713344482342705596902338431028112239219
3738271932239040180282806961859671895283300854301214364 490488247450538240494862724907498158797382117628650397140002940
8874648672221067120699307648274767855728920588388801037214786347368094 632967817768319799667658289736403249926534567919
7313998965774950176225533875807031880312900143325305886825997908935923241637108274310 165097888437763662791633910200092
4680068855107366034170560399498442923325937645002191505971775470523665754346086103139212701515425351 985876556371337938
5567545408159135725649301498583217831189625787337165643408551100857946282788168862122405052118963389608789926

Decrypt result: 1ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff003031300d
0609608648016503040201050004209d1142bb03a4e3331d12c1eed2c8743f2f70d2e1a92f2125336a410386e5171f

SHA256 of uHERMES.bin (exclude attached signature):
9d1142bb03a4e3331d12c1eed2c8743f2f70d2e1a92f2125336a410386e5171f

Figure 8.2: Address Spaces of Large-Capacity RAM

Figure 8.3: Code snippet to compare sha256 hash and RSA decrypt result
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The following log from serial was generated during the upgrading process from 
18514B version firmware to a custom firmware we modified based on 18514B 
version firmware.
00005b70  af 52 38 13 6f 09 f8 0a  0a 44 6f 77 6e 6c 6f 61  |.R8.o....Downloa|
00005b80  64 69 6e 67 2e 2e 2e f2  87 07 d1 f8 0a 43 48 55  |ding.........CHU|
00005b90  4e 4b 20 73 69 7a 65 3a  20 30 78 30 30 30 30 30  |NK size: 0x00000|
00005ba0  34 30 30 20 28 31 30 32  34 20 64 65 63 29 f2 87  |400 (1024 dec)..|
00005bb0  1d 07 d2 04 f8 0a 4c 45  4e 3a 20 30 78 30 30 30  |......LEN: 0x000|
00005bc0  38 31 39 41 30 20 28 35  33 30 38 34 38 20 64 65  |819A0 (530848 de|
00005bd0  63 29 f2 87 1f 07 d3 08  19 a0 f8 0a 43 48 55 4e  |c)..........CHUN|
00005be0  4b 53 3a 20 30 78 30 30  30 30 30 32 30 37 20 28  |KS: 0x00000207 (|
00005bf0  35 31 39 20 64 65 63 29  f2 87 1f 07 d4 02 07 f8  |519 dec)........|
00005c00  0a 50 61 72 74 69 74 69  6f 6e 3a 20 41 50 50 4c  |.Partition: APPL|
00005c10  31 f2 87 21 07 d5 f8 f2  87 83 07 d8 01 fe f8 f2  |1..!............|
...
00005fc0  66 07 d8 f8 f2 8f 31 07  ea f8 f2 8f 59 07 da 19  |f.....1.....Y...|
00005fd0  a0 f8 0a 44 6f 77 6e 6c  6f 61 64 20 63 6f 6d 70  |...Download comp|
00005fe0  6c 65 74 65 20 40 20 30  78 30 30 30 45 31 39 41  |lete @ 0x000E19A|
00005ff0  30 20 77 69 74 68 20 30  78 30 30 30 38 31 39 41  |0 with 0x000819A|
00006000  30 20 62 79 74 65 73 20  6c 65 6e 67 74 68 f2 80  |0 bytes length..|
00006010  13 52 42 09 5e f8 f2 80  13 52 42 0a 01 39 f8 f2  |.RB.^....RB..9..|
00006020  80 13 52 39 17 f8 f2 80  13 52 41 16 f8 f2 80 13  |..R9.....RA.....|
00006030  52 38 13 7e 04 8d f8 0a  0a 44 6f 77 6e 6c 6f 61  |R8.~.....Downloa|
00006040  64 69 6e 67 2e 2e 2e f2  80 2d 07 d1 f8 0a 43 48  |ding.....-....CH|
00006050  55 4e 4b 20 73 69 7a 65  3a 20 30 78 30 30 30 30  |UNK size: 0x0000|
00006060  30 34 30 30 20 28 31 30  32 34 20 64 65 63 29 f2  |0400 (1024 dec).|
00006070  80 30 07 d2 04 f8 0a 4c  45 4e 3a 20 30 78 30 30  |.0.....LEN: 0x00|
00006080  30 31 39 35 41 30 20 28  31 30 33 38 34 30 20 64  |0195A0 (103840 d|
00006090  65 63 29 f2 80 33 07 d3  01 95 a0 f8 0a 43 48 55  |ec)..3.......CHU|
000060a0  4e 4b 53 3a 20 30 78 30  30 30 30 30 30 36 36 20  |NKS: 0x00000066 |
000060b0  28 31 30 32 20 64 65 63  29 f2 80 33 07 d4 66 f8  |(102 dec)..3..f.|
000060c0  0a 50 61 72 74 69 74 69  6f 6e 3a 20 48 42 42 49  |.Partition: HBBI|
000060d0  4f 53 f2 80 35 07 ec f8  f2 80 3e 07 d8 64 f8 f2  |OS..5.....>..d..|
000060e0  80 c6 07 d8 5a f8 f2 81  27 07 d8 50 f8 f2 81 ad  |....Z...'..P....|
...
00006150  f2 84 f2 07 d8 f8 f2 85  bd 07 ea f8 f2 85 e4 07  |................|
00006160  da 95 a0 f8 0a 44 6f 77  6e 6c 6f 61 64 20 63 6f  |.....Download co|
00006170  6d 70 6c 65 74 65 20 40  20 30 78 30 30 30 35 39  |mplete @ 0x00059|
00006180  35 41 30 20 77 69 74 68  20 30 78 30 30 30 31 39  |5A0 with 0x00019|
00006190  35 41 30 20 62 79 74 65  73 20 6c 65 6e 67 74 68  |5A0 bytes length|
000061a0  f2 85 ef 52 39 f8 f2 85  ef 52 41 f8 f2 85 ef 52  |...R9....RA....R|
000061b0  38 13 8f 03 f8 f2 86 c7  03 0a 04 06 f8 f2 87 e3  |8...............|
000061c0  52 39 2e f8 f2 87 e3 52  41 f8 f2 87 e3 52 38 13  |R9.....RA....R8.|
000061d0  6e 08 f9 f8 f2 89 d7 52  39 2e f8 f2 89 d7 52 41  |n......R9.....RA|
000061e0  f8 f2 89 d7 52 38 13 6e  08 fb f8 f2 8a e7 03 04  |....R8.n........|
000061f0  02 f8 f2 8a e8 02 10 f8  f2 8a f5 06 56 f8 f2 8a  |............V...|
00006200  f5 02 f8 f2 8a f5 02 13  0a 49 50 4c 2c 20 31 34  |.........IPL, 14|
00006210  33 38 31 41 20 53 65 70  20 31 35 20 32 30 31 34  |381A Sep 15 2014|
00006220  20 31 34 3a 34 33 3a 35  30 0a 0a 73 74 61 72 74  | 14:43:50..start|
00006230  0a 62 6f 6f 74 20 41 50  50 4c 0a 53 74 61 72 74  |.boot APPL.Start|
00006240  69 6e 67 20 48 45 52 4d  45 53 20 32 2e 31 20 61  |ing HERMES 2.1 a|
00006250  70 70 6c 69 63 61 74 69  6f 6e 20 28 76 65 72 73  |pplication (vers|
00006260  69 6f 6e 3a 20 6b 65 65  6e 66 77 29 0a 48 61 72  |ion: keenfw).Har|
00006270  64 77 61 72 65 20 63 6f  64 65 3a 20 33 0a 0a 2a  |dware code: 3..*|
00006280  2a 2a 20 43 41 52 4c 49  4e 45 5f 32 31 33 20 20  |** CARLINE_213  |
00006290  2d 20 53 54 41 52 32 2e  33 21 0a 0a 2a 2a 2a 20  |- STAR2.3!..*** |
000062a0  48 59 42 52 49 44 2d 43  61 6e 20 4e 4f 54 20 41  |HYBRID-Can NOT A|
000062b0  43 54 49 56 45 20 21 0a  29 0a 0a 4f 53 20 53 74  |CTIVE !.)..OS St|
000062c0  61 72 74 55 70 0a 0a 0a  61 64 6a 75 73 74 44 61  |artUp...adjustDa|
000062d0  74 61 20 6c 6f 61 64 65  64 20 66 72 6f 6d 20 53  |ta loaded from S|
000062e0  45 43 55 52 45 20 21 0a  0a 49 50 4c 2c 20 31 34  |ECURE !..IPL, 14|
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The log shows that we successfully uploaded uHERMES.bin and uapp.bin. 
These two images are also passed the code signing verify, and our custom 
firmware runs after reboot.



P A R T  4
CHAINING 4
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9 Exploratory Research

On Mercedes-Benz A200L cars, the vehicle architecture is very complex. There 
are many ECUs on this model car. To better understand the security of the 
vehicle, we tried to search for some special modules around the infotainment. 
We choose the CSB system in head unit, which supports digital radio function 
for MMB, since the digital radio is an interesting wireless attack vector. We also 
target the airbag control module(ACM) because it connects to CAN-HMI CAN 
bus, which is the same as head unit. We wondered whether and how head unit 
could affect the ACM.

9.1 Digital Radio Research

The head unit supports FM/AM radio broadcasts for most regions. For some 
particular areas, Digital Audio Broadcasting(DAB) and HD Radio also can be 
supported. We tried to set up a radio transmitter for both FM and DAB.

9.1.1 FM

During FM radio broadcasting, a small amount of digital information can be 
transferred with the audio and decoded by the radio receiver, which brings an 
attack surface. For head unit, the process Tuner in CSB system is responsible 
for decoding this information.

Radio Data System (RDS) is the communications protocol standard for 
embedding such digital information in conventional FM radio broadcasts[16]. 
The frequency 87.5 to 108.0 MHz is used for FM broadcasting. On raspberry, 
the maximum GPIO frequency is up to 125MHz. The project PiFmRds[17] makes 
it possible to transmit FM radio from a Raspberry Pi.

According to the REAMDE.md file, the environment can be built by the following 
steps.
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•  Connect antenna to GPIO 4 (pin 7)

•  Download and compile the project

•  Run pi_fm_rds with appropriate parameters

In our test, we run pi_fm_rds with the following command.

Figure 9.1 shows that the head unit found our customs FM signals.

9.1.2 Digital Audio Broadcasting

MBUX supports digital audio broadcasting(DAB) and HD Radio. They are all 
digital radio standards. HD Radio is mainly used in North America. We choose 
DAB as our test target because the DAB test environment is easier to be set 
up with open source software-defined radio. There is no public information 
on setting up an HD radio station. DAB standard is open to the public, but HD 
Radio is proprietary.

To set up our environment, we use odr-mmbtools. It is a collection of open 
source software to set up a small DAB station. The hardware we used is USRP 
B210.

In Shanghai, China, DAB is not available. We had to use odr-mmbtools to 
generate DAB signal samples to test. DAB function in cars that sold in Shanghai 

sudo ./pi_fm_rds -freq 100.1 -pi ffff -rt ’Hello, world!’ -ps ’KeenTest’

Figure 9.1: Customs FM radio signals
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is also disabled. So is our test bench. We used methods in section 6.2 to unlock 
DAB function in our test bench.

Now we can receive the signal we generated in head unit.

Security Analysis

DAB is more powerful than RDS. We can pass on many more formatted data, 
such as pictures and XML files. DAB standard defines that Java programs can 
be transmitted and executed. But according to our reverse engineering, we 
found Java not supported in the head unit implementation.

Since we can broadcast pictures to head unit via DAB, we analyzed the 
historical security issues involving picture formats. But none of them are likely 
exploitable. We then reversed the XML parsing code. XML is encoding into a 
simpler flattened format before transmission. The parsing code is also simple, 
and we didn’t find a memory corruption bug related to XML parsing.

We instrumented the tuner executable and tried to fuzz test, and fed random 
data to odr-mmbtools to generate our test samples and broadcast them to 
head unit. But we didn’t get useful results.

The head unit implemented two high-level protocols: EPG and TPEG. We tried 
to fuzz these high-level protocols. We don’t have a valid EPG sample since DAB 
is unavailable here. We tried to manually construct one but failed after many 
days of attempts. Therefore we closed this research case.

Figure 9.2: DAB station
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9.2 Airbag Research

After we compromised head unit, we started to think about what ECUs we can 
penetrate next.

The head unit sends vehicle control CAN messages on CAN-HMI. These CAN 
messages are filtered and delivered to the target ECU by EIS. But we found an 
exception, the Airbag Control Module(ACM) connects with head unit on CAN-
HMI directly.

Figure 9.3 is the Airbag Control Module. It controls airbag deployment.

Figure 9.4 is an airbag we bought. The main component inside the airbag is the 
gas generator.

Figure 9.3: Airbag control module

Figure 9.4: Airbag
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The gas generator has two pins, which connect to ACM. Under conditions like 
a car crash, the ACM apply voltage on these pins to deploy the airbag. Since we 
now have control over head unit that connects to CAN-HMI. We started to test 
if the airbag can be triggered from CAN-HMI.

We substitute the airbag with a LED bulb in our lab because the airbag is a one-
off, and the airbag explode can be dangerous. We didn’t try on an actual vehicle. 
We have tried the following methods instead on our test bench.

The first method, if ACM is OTA capable, it is highly likely updated via CAN-
HMI. We may flash malicious firmware to ACM from head unit. We obtained 
the firmware from the Mercedes-Benz firmware update server. But when we 
update the firmware with our diagnostic tool, it told us to ignite the engine. This 
may be caused by a CAN signal missing in CAN bus. In the meantime, we tried 
to modify the firmware. The firmware we downloaded is encrypted. We then 
dump the CODE flash from the storage flash chip. We load it into IDA Pro. There 
is no symbols or strings inside the firmware. We didn’t find any hints after one 
week of reversing engineering, and gave up this method.

The second method, ACM is configurable via CAN-HMI. We tried to configure 
some parameters of this module, hope these parameters can affect the 
behavior of ACM. However we have no expertise in this area, and have no clue 
of what each parameter does. Therefore we moved on to the last method.

Figure 9.5: Gas generator pins
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The Third method, deploy airbag according to ISO 26021-1:2008. This ISO 
specification defined a method to deploy pyrotechnic devices via CAN bus in an 
end-of-life vehicle. We followed the steps in this specification, but at one middle 
stage, diagnostic tool reported ”conditions not meet” error. It didn’t tell us what 
the conditions are, so we don’t know how to meet the ”conditions”.

For vehicle safety reason, we didn’t test these on a real car. We failed in 
deploying airbag in our lab eventually.

Figure 9.6: Configurable parameters



76

C H A P T E R  1 0 :  C O M P R O M I S E  S C H E M E

10 Compromise Scheme

In this chapter, we will explain the attack scenarios that the attack vector that 
can be used. We will also explain the unrealized attack chains due to the lack of 
vulnerabilities within some attack vectors.

10.1 Verified attack chains

We get our research results based on the testbench we built and a real car 
in the research process. In other words, our exploits can be used for two 
scenarios, removed head units and actual cars.

10.1.1 For a Removed head unit

This attack chain is more likely to occur in the scenario that a thief wants to 
unlock Anti-Theft protection in a stolen head unit.

This scenario is more likely to happen when a thief stole a head unit and plans 
to power it up. Because of the anti-theft protection, he can do nothing on 
the screen. Therefore, in our research, we fully simulated this kind of attack 
scenario. It’s just that we got the head unit legally.

First, we can access the head unit’s intranet by removing the CSB broad and 
soldering the ethernet test points with an RJ45 cable, as we explained in 
section 5.1.2.

Figure 10.1: Verified attack chains on two scenarios
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We can then get a reverse shell on head unit by exploiting the HiQnet protocol’s 
vulnerabilities and escalate the privilege to root. We explain these in detail in 
sections 5.2 and 5.4.

After that, we can unlock the Anti-theft function and vehicle functions 
permanently by patching binary SysAct, which we explained in section 6.1 and 
6.2.

10.1.2 For a Real Vehicle

For a real car attack scenario, we have fully confirmed this kind of attack chain.

The attacker can visit a malicious website by using the browser and exploit 
the vulnerability within the browser to get the reverse shell of head unit. We 
explained this in section 5.3.

The attacker then gets root privilege by exploiting the kernel vulnerability as we 
did in section 5.4.

Then, the attacker can implant a permanent backdoor on head unit as the 
section 6.4 describes.

Even the attacker can perform vehicle control actions, like control ambient light, 
reading light, and sunshade cover, which describes in section 6.7.

10.2 Unrealized Attack Chains

In our research, we’ve tried a lot of attack surfaces. However, only parts of 
them succeeded. If we just discuss the attack paths, these attack chains 
can be obtained by concatenating all attack surfaces. Figure 10.2 shows the 
four attack chains we tried during our research. The green arrow means we 
compromised this attack surface and the red arrow means we failed in this 
attack surface.
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10.2.1 From Wi-Fi to Vehicle Control - 1

On T-Box, the Wi-Fi function is provided by Broadcom Wi-Fi chip. A vulnerability 
in Wi-Fi firmware could result in remote code execution in the Wi-Fi chip. We 
didn’t achieve this attack.

A compromised Wi-Fi chip has the opportunity to attack the host system 
through the connected PCI-E bus. In our search, we confirmed that the kernel 
code segment could be tampered with. Therefore, this attack surface could be 
considered compromised.

The CAN-D CAN bus is connected to T-Box. We achieved sending arbitrary CAN 
packets on CAN-D by fully compromised the SH2A chip on T-Box.

10.2.2 From Cellular Network Hijack to Vehicle Control - 2

There are two attack vectors on this attack surface. The first attack vector 
is to compromise the balong baseband by exploiting the LTE protocol’s 

Figure 10.2: Possible attack chain
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vulnerabilities or CDMA2000 protocol. This is a tough way, and we didn’t 
achieve it. The system of baseband and the Linux system runs on the same 
processor. The attacker needs to find a way to compromise the host system.

The other attack vector is that the attacker can downgrade the cellular network 
connection from 4G to 2G to hijack and exploit the vulnerabilities in the 
processes parsing the content from HTTPS, MQTT, and GSM text.

In the end we didn’t find any weakness or vulnerabilities in this attack vector.

10.2.3 From Radio to Airbag Control Module - 3

On head unit, the CSB system is responsible for decoding digital radio wireless 
signals. Any vulnerabilities in this procedure could result in remote code 
execution in CSB system. We didn’t achieve this attack.

The CSB system communicates with MMB system through Ethernet. The 
vulnerabilities in HiQnet protocol allow the attacker to gain privilege on MMB 
system from CSB system. We fully achieved this attack.

After exploiting the HiQnet protocol, the privilege can be escalated to root by 
exploiting the kernel vulnerability. We achieved a stable kernel exploit.

The CAN-HMI CAN bus is connected to T-Box. To send arbitrary CAN packets 
on CAN-HMI, the RH850 chip on head unit should be compromised. We didn’t 
achieve that.

We failed to compromised the ACM in our research.

10.2.4 From Head Unit to T-Box - 4

The T-Box connects to head unit with 5G Wi-Fi. However, few attack surfaces 
exists on the network. We only found one tcp connection between head unit 
and T-Box on our testbench.

The head unit and T-Box also connects via EIS and CAN bus. We try to find 
vulnerabilities when T-Box processing CAN packet. But we only found a 
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non-exploitable vulnerability in a user-space process during processing the 
message from SH2A chip.

In the end, we didn’t achieve compromising from Head unit to T-Box.



P A R T  5
EPILOGUE  5
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11 Target Version

The research mentioned in previous chapters was based on the following 
hardware and software versions.

ENVIRONMENT COMPONENTS
HARDWARE

PART NUMBER
SOFTWARE VERSIONS

Test Bench

Head Unit 1779014003
apilevel/ntg6/057

NTG6_FR029.0_PDK_SWPF_20180815_Hotfix02

T-Box 1679015902
E334.2
E551.6

Benz A200L
(Made in 2019)

Head Unit 2479022604 NTG6_FR031.0_PDK_SWPF_20180726_Hotfix03

Table 11.1: Version list
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12 Vulnerabilities List

The following table shows the vulnerability we found and reported to Mercedes-
Benz. These bugs have been fixed before we publish this research paper.

VULNERABILITY TYPE* ECU* CVE ID PAGE

Wi-Fi SSID and passphrase transmit in 
cleartext via CAN-D

Information
Disclosure

HU
T-Box

- 24

Message Length not checked in HiQnet 
Protocol

Buffer
Overflow

HU CVE-2021-23906 31

Count in MultiSvGet not checked in 
HiQnet Protocol

Buffer
Overflow

HU CVE-2021-23907 32

Count in GetAttributes not checked in 
HiQnet Protocol

Buffer
Overflow

HU CVE-2021-23907 33

Count in MultiSvSet not checked in 
HiQnet Protocol

Buffer
Overflow

HU CVE-2021-23907 34

MultiSvSetAttributes Type confusion 
HiQnet Protocol

Buffer
Overflow

HU CVE-2021-23908 35

V8 Type confusion in QtWebEngine RCE HU RESERVED 40

Outdated Linux kernel LPE HU CVE-2017-6001 42

RH850 Denial of Service DoS HU - 53

Attack Host System from Wi-Fi Chip RCE T-Box - 57

Array Out-of-bound in 
RemoteDiagnosisApp

Memory 
Corruption

T-Box CVE-2021-23910 59

Code Execution on SH2 MCU Code Execution T-Box CVE-2021-23909 62

Firmware downgrade on SH2 MCU
Firmware 

Downgrade
T-Box 64

Table 12.1: Vulnerability list

* RCE=Remote Code Execution, LPE=Local Privilege Escalation, DoS=Denial of Service
* HU=Head Unit
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13 Conclusion

This report showed how we performed our security research on Mercedes-
Benz’s newest infotainment system, MBUX. In order to complete some attack 
chains, We analyzed many attack surfaces and successfully exploited some 
of the attack surfaces on head unit and T-Box. For head unit, we demonstrated 
what the attacked could do in a compromised head unit system for two attack 
scenarios, the removed head units and the real-world vehicles. For T-Box, we 
demonstrated how to send arbitrary CAN messages on T-Box and how to 
bypass the code signing mechanism to flash a custom SH2A MCU firmware 
after the T-Box system is compromised. We also documented our attempts on 
compromising FM Radio and Airbag which didn’t work out in the end.
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