

Contents
1 Introduction 2

2 Architecture overview 5

2.1 Hardware .. 5

2.1.1 Head Unit ... 5

2.1.2 T-Box ...10

2.1.3 Electronic Ignition Switch ...11

2.1.4 Instrument Cluster ... 12

2.2 Software .. 12

2.2.1 Head Unit ... 12

2.2.2 T-Box .. 12

2.3 CAN Network Overview ... 13

3 Research Environment Setup 14

3.1 Connecting ECUs ...14

3.2 Wake Up Test Bench ... 15

3.3 Anti-Theft ... 16

4 Attack Surfaces Analysis 17

4.1 Head Unit ... 17

4.1.1 Attack Through Browser ... 17

4.1.2 Wi-Fi ... 17

4.1.3 Kernel .. 18

4.1.4 Ports on MMB ... 18

Contents
4.1.5 Bluetooth ... 19

4.1.6 USB ... 19

4.1.7 App .. 19

4.2 T-Box .. 19

4.2.1 Attack Through Wi-Fi Chip .. 19

4.2.2 Attack Through GNSS .. 20

4.2.3 CAN ... 20

4.2.4 Baseband... 20

4.2.5 GSM hijack .. 21

5 Compromise Head Unit 24

5.1 Access to the Intranet of Head Unit .. 24

5.1.1 Connect to Head Unit as T-Box .. 24

5.1.2 Connect to MMB as CSB .. 25

5.2 Remote Code Execution on Head Unit .. 26

5.2.1 Implementation of HiQnet Protocol ... 28

5.2.2 Vulnerabilities in HiQnet Protocol ... 30

5.2.3 Exploit HiQnet Protocol Vulnerability ... 36

5.3 Exploit the Browser ... 40

5.3.1 QtWebEngine ... 41

5.3.2 Exploit the QtWebEngine .. 41

5.4 Local Privilege Escalation .. 42

5.4.1 Kernel LPE with A perf Bug ... 42

Contents
5.4.2 CVE-2017-6786,6001 .. 43

5.4.3 Bypass Cgroups Restriction ... 43

6 Post Attack in Head Unit 46

6.1 Anti-Theft Unlock ... 46

6.2 Unlocking Vehicle Functions .. 48

6.3 Engineering Mode .. 49

6.4 Persistent Backdoor ... 51

6.5 Display Screen Tampering... 51

6.6 RH850 Denial of Service ... 53

6.7 Perform Vehicle Control Actions .. 53

7 Compromise T-Box 57

7.1 Compromise Host from Wi-Fi chip .. 57

7.2 Trigger Memory Corruption From SH2A Chip .. 58

7.2.1 Message Format between SH2A MCU and Host ... 59

7.2.2 Out-of-bound Vulnerability in RemoteDiagnosis ... 59

8 Post Attack in T-Box 61

8.1 Sending Arbitrary CAN message from T-Box ... 61

8.1.1 CAN Bus Message Transmit Logic ... 61

8.1.2 Vulnerability in SH2A Firmware... 62

8.1.3 Transmit Arbitrary CAN Message to CAN Bus .. 63

8.2 Flashing Custom Firmware on SH2A MCU .. 63

Contents
8.2.1 Firmware Downgrade Vulnerability ... 64

8.2.2 Bypass Code Signing Check During Upgrading ... 65

9 Exploratory Research 70

9.1 Digital Radio Research .. 70

9.1.1 FM ... 70

9.1.2 Digital Audio Broadcasting .. 71

9.2 Airbag Research .. 73

10 Compromise Scheme 76

10.1 Verified attack chains ... 76

10.1.1 For a Removed head unit .. 76

10.1.2 For a Real Vehicle ...77

10.2 Unrealized Attack Chains ..77

10.2.1 From Wi-Fi to Vehicle Control - 1.. 78

10.2.2 From Cellular Network Hijack to Vehicle Control - 2 .. 78

10.2.3 From Radio to Airbag Control Module - 3 ... 79

10.2.4 From Head Unit to T-Box - 4 .. 79

11 Target Version 82

12 Vulnerabilities List 83

13 Conclusion 84

P A R T 1
Overview 1

2

C H A P T E R 1 : I N T R O D U C T I O N

1 Introduction
In the past years, we have analyzed the security of connected vehicles from top
brands worldwide, such as BMW[1], Lexus[2], and Tesla[3][4][5]. Mercedes-Benz is
also a great vehicle vendor, which is producing the most advanced cars in the
world. It is worthwhile to study cars made by Mercedes-Benz.

Mercedes-Benz's latest infotainment system is called Mercedes-Benz User
Experience(MBUX). Mercedes-Benz first introduced MBUX in W177 Mercedes-
Benz A-Class[6] and adopted MBUX in their entire vehicle line-up, including
Mercedes-Benz C-Class, E-Class, S-Class, GLE, GLS, EQC, etc. MBUX is powered
by Nvidia's high-end autonomous vehicle platform. Many cutting-edge
technologies presented on this system, such as virtualization, TEE, augmented
reality, etc.

Earlier this year, Qihoo 360 published their research on Mercedes-Benz [7], which
mainly focused on Mercedes-Benz 's T-Box, instead of the central infotainment
ECU: head unit. The test bench showed in their presentation was built with an
NTG5 head unit, which is a bit old.

In MBUX, the tested head unit version is NTG6 (being used in A-, E-Class, GLE,
GLS and EQC). Our research was based on this brand new system MBUX, NTG6
head unit, and vehicle W177.

In our research, we analyzed many attack surfaces and successfully exploited
some of them on head unit and T-Box. By combining some of them, we
can compromise the head unit for two attack scenarios, the removed head
units and the real-world vehicles. We showed what we could do after we
compromised the head unit. Figure 1.1 demonstrates the compromisation of
an actual car.

We didn't find a way to compromise the T-Box. However, we demonstrated
how to send arbitrary CAN messages from T-Box and bypass the code signing
mechanism to fash a custom SH2A MCU firmware by utilizing the vulnerability
we found in SH2A firmware on a debug version T-Box.

3

C H A P T E R 1 : I N T R O D U C T I O N

In this document, we will describe our findings during the research.

Chapter 2 introduces the whole architecture overview about hardware,
software, and CAN networks.

Chapter 3 describes our test bench setup, how we built a low-cost testing
environment, how we collected ECUs and wired them up, and how we powered
up our test bench.

Chapter 4 illustrates the potential attack surfaces on head unit and T-Box.

Chapter 5 presents the details of four attack surfaces of head unit in the
direction from the outside to the internal system.

Chapter 6 will discuss the potential impact after the head unit is compromised.
For example, we can tamper with the images displayed on the screen and
perform some vehicle actions after we compromised the head unit.

Chapter 7 presents two attack attempts of T-Box in the direction from the
outside to the internal system.

Chapter 8 describes two attack processes that target the SH2A MCU on T-Box.
By utilizing the vulnerabilities in SH2A firmware, we can send arbitrary CAN
messages to CAN-D CAN bus and ash a custom firmware on SH2A MCU.

Figure 1.1: Compromised head unit

4

C H A P T E R 1 : I N T R O D U C T I O N

Chapter 9 demonstrates our research on the hardware module Country
Specific Board and Airbag Controller Module. We will introduce the research on
digital radio and the search process of the Airbag Controller Module.

In Chapter 10, we analyze the potential attack chains by combining the
potential attack surfaces. We successfully verified each of the head unit's
attack chains, the removed infotainment compromise scheme, and the actual
vehicle compromise scheme. Also, we mention the unrealized attack chains in
our research.

Chapter 11 and Chapter 12 list the hardware and software versions we tested
on and the vulnerabilities we found.

In the end, we conclude our research.

5

C H A P T E R 2 : A R C H I T E C T U R E O V E R V I E W

2 Architecture overview
Based on our hardware, some public documents, and function analysis, we
basically understand the entire architecture of the MBUX. The architecture
overview is shown in Figure 2.1.

2.1 Hardware

2.1.1 Head Unit

Head unit’s version is NTG6. It plays a vital role in the MBUX infotainment
system. It provides multimedia, navigation, voice control, and other functions.

Figure 2.1: Architecture overview

6

C H A P T E R 2 : A R C H I T E C T U R E O V E R V I E W

From the connectors in the head unit’s back, we can overview the head unit’s
function.

NTG6 head unit composes three main PCB boards inside. Vendor named them
Multimedia Board(MMB), Base Board(BB) and Country Specific Board(CSB).

Figure 2.2 : Head unit

Figure 2.3: Head unit Interfaces

7

C H A P T E R 2 : A R C H I T E C T U R E O V E R V I E W

Multimedia Board

On Multimedia Board, there is a big Nvidia Parker SoC. Near the SoC, there is a
32GB MMC. This MMC stores the main file system of the head unit system.

Figure 2.4: Multimedia Board

Figure 2.5: DRAM and NAND flash

8

C H A P T E R 2 : A R C H I T E C T U R E O V E R V I E W

After removing this SoC’s cooling shield, we can see 4 DRAM, a NAND flash
chip, and its main processor. The NAND flash contains bootloader, hypervisor,
and TEE related code and data.

Base Board

On the top side of the Base Board, there is an RH850 chip R7F7015223 from
Renesas. It is mainly responsible for CAN transmission. One MOST interface
controller OS81118, which provides the MOST network to the head unit
operating system. Two 5G Wi-Fi chips BCM89359. One is for connections to
passengers’ devices. The other one is for connections to T-Box.

Figure 2.6: Base Board Top View

9

C H A P T E R 2 : A R C H I T E C T U R E O V E R V I E W

On the bottom side of the Base Board, there is a switch chip: KSZ8895MLU.
This switch chip is the center of head unit Ethernet. Most of the system in head
unit that requires Ethernet connects to this chip.

There is a DSP chip from Analog Devices: ADSP-21489. According to our
analysis, it is responsible for audio processing. The architecture is SHARC.

Figure 2.7: Base Board Bottom View

10

C H A P T E R 2 : A R C H I T E C T U R E O V E R V I E W

Country Specific Board

The Country Specific Board in head unit varies by country. The board in our
head unit runs a Jacinto 5 Linux system. There is a radio solution from NXP,
named Saturn. And there is a GNSS chip from u-blox.

2.1.2 T-Box

T-Box, it’s also called TCU or HERMES module. It connects the vehicle to LTE
network, provides head unit internet connection, and receives vehicle control
commands from the cloud server.

Figure 2.8: Country Specific Board

11

C H A P T E R 2 : A R C H I T E C T U R E O V E R V I E W

2.1.3 Electronic Ignition Switch

The Electronic Ignition Switch(EIS) is the gateway ECU in the vehicle. It mainly
contains two functions, the keyless function and the gateway function.
According to our experiment, this ECU also acts as a firewall that filters CAN
messages.

Figure 2.9: T-Box

Figure 2.10: Electronic Ignition Switch

12

C H A P T E R 2 : A R C H I T E C T U R E O V E R V I E W

2.1.4 Instrument Cluster

Figure 2.11 shows the instrument cluster ECU. There is an RH850 chip inside,
which runs an RTOS. It connects to head unit with Ethernet and a video wire.

2.2 Software

2.2.1 Head Unit

On the NTG6 head unit, the Multimedia Board consists of the Tegra T18X SoC.
Therefore, the hardware can support the Nvidia Tegra hypervisor very well. The
hypervisor virtualizes two Linux systems. One is the primary Linux system, and
another is the display server.

Besides, the Multimedia Board also supports Trusty TEE , which is used for
encrypting some sensitive data of the system.

2.2.2 T-Box

On T-Box, the system runs on SoC ME919bs designed by Huawei. It is a Linux
system, but similar to an Android in some ways. For example, the dynamic

Figure 2.11: Instrument Cluster

13

C H A P T E R 2 : A R C H I T E C T U R E O V E R V I E W

linker and the format of the boot image. Programs are developed by Harman
and Huawei.

2.3 CAN Network Overview

There are many CAN buses on Mercedes-Benz A200L cars. Figure 2.12 shows
the overview of the CAN network.

Figure 2.12: CAN Network Overview

14

C H A P T E R 3 : R E S E A R C H E N V I R O N M E N T S E T U P

3 Research Environment Setup

Testing on a real car is convenient, but for a security test, testing on a test
bench can reduce the risk of vehicle damage and provide more flexibility.

We bought many infotainment ECUs for building our test bench, including four
head units, server T-Boxes, and other ECUs.

In this chapter, we show our steps to assemble ECUs we bought into a working
test bench.

3.1 Connecting ECUs

According to Mercedes-Benz software’s whole view of the wiring diagram,
we wired the ECUs we bought. Figure 3.2 shows our test bench’s connection
diagram.

Figure 3.1: Second-hand ECUs

15

C H A P T E R 3 : R E S E A R C H E N V I R O N M E N T S E T U P

3.2 Wake Up Test Bench

The test bench won’t simply be powered on after connected to the power
supply. In an actual car, when you ignite the engine, wake-up CAN signals come
from CAN bus to power the head unit up. We need to capture and replay these
signals.

We don’t have a real car to capture the signals at that time. However, we found
that there are tiny boxes in the vehicle market that emit wake-up signals. We
bought one of these boxes and successfully powered on our test bench.

Figure 3.2: Bench connection diagram

Figure 3.3: Wake-up CAN box

16

C H A P T E R 3 : R E S E A R C H E N V I R O N M E N T S E T U P

Out of curiosity, we captured signals that came from this box. It emits three
CAN signals periodically.

Connect this wake-up CAN box to CAN-HMI, head unit boots, and the screen
lights up.

3.3 Anti-Theft

After the head unit booted up, it enters Anti-Theft mode. A notification UI layer
covers the touch screen in this mode, preventing the user from operating on
the screen. We will show our method of Anti-Theft unlocking in the following
chapters.

ID DATA

0x25E 64 64 64 00 03 00 00 00

0x2F7 C2 50 10 57 12 5D 5F 53

0x020 39 C9 41 1C C0 00 00 C0

Table 3.1: Wake-up CAN signals

Figure 3.4: Working test bench

Figure 3.5: Anti-Theft screen

17

C H A P T E R 4 : A T T A C K S U R F A C E S A N A L Y S I S

4 Attack Surfaces Analysis

After the testing environment has been set up, we analyzed the attack surfaces
of MBUX. In this chapter. We will list the common attack surfaces that exist
on head unit and T-Box. We will also assess the difficulty and the possibility of
compromising these attack surfaces. Figure 4.1 shows the attack surfaces we
found on Mercedes-Benz A200L. We only tried some of the attack surfaces.

4.1 Head Unit

4.1.1 Attack Through Browser

MBUX provides a browser application for the driver and passengers on the
touch screen. From a security point of view, it opens a dangerous attack
interface since the browser’s JavaScript engine is more likely to be vulnerable.

4.1.2 Wi-Fi

Figure 4.1: Attack surfaces

18

C H A P T E R 4 : A T T A C K S U R F A C E S A N A L Y S I S

Attack Wi-Fi chip

In NTG6 head unit, there are two BCM89359 Wi-Fi modules on broad BB. The
BCM89359 chip a 5G Wi-Fi/Bluetooth Smart 2X2 MIMO Combo Chip. One is
used to set up an AP for passengers. The other is used to set up an AP for T-Box.

In the year 2020, we published a research about the Wi-Fi Stack on Tesla. The
research demonstrates two attack surfaces belong to an attack chain, from
wireless packet to Wi-Fi chip and from Wi-Fi chip to host system. For NTG6
head unit, the two attack vectors are different.

For the first attack vector that from wireless packet to Wi-Fi chip, a vulnerability
should be found in the Broadcom BCM89359 firmware. Project zero published
their researches on Broadcom Wi-Fi firmware and showed how to exploit the
Broadcom firmware vulnerability. We didn’t reproduce such a kind of attack on
NTG6 head unit.

Attack from Wi-Fi chip to Host system

On NTG6 head unit, the Wi-Fi chip connects to the host system via the PCI-E
interface. According to project zero’s research, it is possible to perform a DMA
attack to write the host’s physical memory directly if the host does not enable
IOMMU or VT-d. On NTG6 head unit, the host system is launched by the Nvidia
hypervisor. What’s important is that the IOMMU is enabled. Eventually we didn’t
achieve a successful exploit. In the worst case, the hypervisor will panic.

4.1.3 Kernel

The version of the Linux kernel in the system is 3.18.71, which is outdated. In
our research, We utilized a kernel vulnerability to achieve privilege escalation.

4.1.4 Ports on MMB

The CSB system and MMB system are both Linux systems. They can
communicate through Ethernet. Their IP addresses belong to the subnet
192.168.210.109/30. Many TCP or UDP ports on the MMB system can be
accessed by CSB. For example, the radio information is transferred through a
TCP socket. Therefore, there are many attack vectors from CSB.

19

C H A P T E R 4 : A T T A C K S U R F A C E S A N A L Y S I S

4.1.5 Bluetooth

Head unit provides Bluetooth functions to passengers. If there are
vulnerabilities in Bluetooth stack, it’s possible to achieve code execution in head
unit. We demonstrated this kind of attack in our Lexus research[2]. We didn’t
focus on Bluetooth this time on Mercedes-Benz.

4.1.6 USB

As far as we know, head unit supports USB sticks. There is code to save user
configurations and system logs to USB sticks. Also, there is code to read map
data and Point of Interest(POI) data from a USB stick. Improper handling of
these data can lead to security risks.

Head unit supports Carplay, Android Auto, MirrorLink, and CarLife. These
functions can be accessed via USB. If there are vulnerabilities in any of these
functions, it will be possible to attack head unit through USB.

4.1.7 App

Nowadays, vendors like to put third-party apps in their head unit. According
to our previous experience, third-party apps are prone to Man-In-the-Middle
attacks.

Mercedes-Benz also supports third-party Apps, which communicate with
remote servers. The functions of these Apps are very limited. We didn’t test
this attack surface in our research because the Apps in our test bench are not
working.

4.2 T-Box

4.2.1 Attack Through Wi-Fi Chip

On T-Box, the vendor of the wireless chip is Broadcom, and the model is
bcm4359. Inspired by Project Zero’s research[8][9], we also investigated if the
T-Box is vulnerable to the same DMA issue. The chip can overwrite arbitrary
physical memory unlimited since this bcm4359 connects to the host system

20

C H A P T E R 4 : A T T A C K S U R F A C E S A N A L Y S I S

through the PCI-E bus.

4.2.2 Attack Through GNSS

On T-Box, there is a chip STA8090 which is a single die standalone positioning
receiver IC working on multiple constellations. This chip connects to the host
system via serial. The process Location receives NMEA messages from the
STA8090 through this serial.

The firmware can be found from the file system. It is an RTOS system based on
OS20. Therefore, there are two attack vectors. The first one is from wireless to
STA8090 chip. The second one is to attack the host system from the STA8090
chip through serial.

4.2.3 CAN

On Mercedes-Benz A200L Cars, T-Box connects to CAN bus CAN-D. The SH2A
chip is responsible for transmitting and receiving CAN messages between
the Linux system and CAN bus. Therefore, a difficult attack surface is that
attacking the SH2A chip from the CAN-D bus.

Additionally, some processes will process the message wrapped by CANTP
protocol or other protocol. It gives the attacker a chance to attack the user-
mode process from the CAN bus.

4.2.4 Baseband

The T-Box utilizes Huawei’s LTE solution me919bs. It means the baseband is
balong and the firmware for cellular baseband locates on T-Box’s file system.

In 2017, we compromised Huawei’s balong baseband in pwn2own. We found in
T-Box firmware version E311, the bug we used in pwn2own exists.

We set up the environment we used in pwn2own. But we found that the T-Box
wouldn’t connect to our station. The T-Box uses UMTS but not CDMA2000. The
bug we used in pwn2own lays in CDMA2000 protocol stack. Although the code
contains the bug, it cannot be triggered.

21

C H A P T E R 4 : A T T A C K S U R F A C E S A N A L Y S I S

We tried to find other bugs by analyzing the balong firmware. Besides the
leaked source code online, we found that the firmware contains a symbol
table. In this symbol table, there are function names, function addresses, and
function sizes. The symbols helped us a lot in understanding the firmware.

Later we upgrade T-Box firmware to E511. The new baseband firmware
introduced more security mitigations and fixed the bug we used in pwn2own,
which made it very difficult for us to attack from base band.

4.2.5 GSM hijack

T-Box receives vehicle control commands from a remote server via the cellular
network. Vehicle control commands can be received by T-Box via HTTPS,
MQTT, or GSM text messages. T-Box verifies server identifications in HTTPS
and MQTT. So hijacking vehicle control commands in these two protocols is
not possible.

T-Box connects to the cellular station via LTE. We can downgrade it to GSM and
make T-Box connects to our base station. We set up a base station using USRP
and OpenBTS. After T-Box connected to our station, we can send GSM text
messages to T-Box.

We analyzed the vehicle control message format and found that the message
is signed by Mercedes-Benz’s private secret key. And it is authenticated inside
T-Box. Without the private secret key, we are unable to construct a valid vehicle

Figure 4.2: symbols in firmware

22

C H A P T E R 4 : A T T A C K S U R F A C E S A N A L Y S I S

control message. We analyzed the cryptography algorithm and did not found
any weakness.

We then reversed the code and tried to find memory corruption bugs in the
SMS handling code. However, we did not find exploitable bugs.

P A R T 2
HEAD UNIT 2

24

C H A P T E R 5 : C O M P R O M I S E H E A D U N I T

5 Compromise Head Unit

This chapter presents the details of four attack surfaces of head unit in the
direction from the outside to the internal system, including how we connected
to the head unit’s intranet by soldering wires on the PCB, how we achieve
remote code execution in head unit by exploiting the HiQnet protocol and the
browser. Finally, we will details how to achieve local privilege escalation in head
unit.

5.1 Access to the Intranet of Head Unit

Head unit exposes at least six internet access interfaces, two Ethernet ports for
DOIP, two Wi-Fi APs, two Bluetooth tether connections. However, firewall rules
in head unit are strict. We can only access a few listening TCP or UDP ports on
these interfaces.

To extend the attack surface, we managed to connect to the intranet of head
unit.

5.1.1 Connect to Head Unit as T-Box

Head unit and T-Box connects via a hidden WPA2-encrypted 5Ghz Wi-Fi. Head
unit hosts access point with SSID ”MB Hermes AP xxxxx 5Ghz”, where ”xxxxx”
is a fixed random number. The passphrase is a 16-byte string with random
characters.

After head unit and T-Box booted up, T-Box receives SSID and passphrase from
head unit via CAN bus, then connects to head unit.

However, SSID and passphrase are transmitted as plaintext on CAN bus. As a
result, it is possible to sniff SSID and passphrase from CAN bus.

25

C H A P T E R 5 : C O M P R O M I S E H E A D U N I T

Figure 5.1 shows the SSID and passphrase we captured. We can connect to
head unit as a T-Box or connect to T-Box as a head unit.

In this way, we were able to connect to more TCP or UDP ports. We also
found another way to enable more port access, which we will show in the next
section.

5.1.2 Connect to MMB as CSB

MMB runs a Linux environment, which is the primary system we saw on the
screen. CSB runs another Linux. MMB and CSB connect via an Ethernet switch
chip KSZ8895MLU.

We found 4 Ethernet testing points on BB. They are CSB’s Ethernet testing
points.

Figure 5.1: Captured CAN data

Figure 5.2: Head unit internal network connection diagram

26

C H A P T E R 5 : C O M P R O M I S E H E A D U N I T

We removed CSB from head unit and soldered these testing points with an
RJ45 cable.

By connect the other end of the RJ45 cable to a PC, and assign CSB’s static IP
address 192.168.210.110 to the PC’s Ethernet interface, we can fake our PC as
a CSB to MMB.

This enabled many more TCP and UDP access to head unit.

5.2 Remote Code Execution on Head Unit

By faking as CSB, our computer and the interface eth0 of the MMB system
are in the same subnet 192.168.210.109/30. Since our PC acts as a CSB

Figure 5.3: Switch chip and Ethernet test point on BB

Figure 5.4: Soldered RJ45 cable to testing points

27

C H A P T E R 5 : C O M P R O M I S E H E A D U N I T

system, we can communicate with some services provided by MMB on TCP
or UDP ports. In Figure 5.5, the result of nmap shows the ports which can be
connected.

TCP port 3804 interested us because it was assigned to the HiQnet
protocol developed by HARMAN. The port 3804 was listened on by the
process AudioManager , which was developed by GENIVI. The library
libplugincontrolinterfacentg6.so is responsible for processing the HiQnet
protocol on the MMB system, including receiving and processing the HiQnet
message.

The following subsections will first introduce the HiQnet protocol’s details, then
explain five vulnerabilities we found in the HiQnet protocol implementation. In

Figure 5.5: Ports listening on MMB

28

C H A P T E R 5 : C O M P R O M I S E H E A D U N I T

the end, the whole vulnerability exploitation process will be shown.

5.2.1 Implementation of HiQnet Protocol

After read ing protoco l documents and revers ing shared ob ject
libPluginControlInterfaceNTG6.so, we could understand how the HiQnet
protocol is implemented in the NTG6 head unit.

HiQnet Message Format

HiQnet Message consists of two parts, Header and Payload. The Programmers
Guide[10] describes the structure of the Header in Figure 5.6.

Some fields in the Header are as follows:

• Header Length: The size in bytes of the header.

• Message Length: The size in bytes of the entire message.

• Source Address: Where the messages come from.

• Destination Address: Where the message will be delivered.

• Message Type: The method that the destination Device must perform. Usually, the
format of the payload is related to Message Type.

Abstract Objects in HiQnet Protocol

There are many abstract objects in the HiQnet protocol. Clients can modify
them or change the relationship between them.

Figure 5.6: Format of HiQnet header

29

C H A P T E R 5 : C O M P R O M I S E H E A D U N I T

Some of the abstract objects are as follows:

• Device / Node: Represent the Device or product itself. Consists of many Virtual
Devices.

• Virtual Device: A collection of Objects, parameters, and attributes.

• Object: A collection of parameters.

• Parameter / StateVariable / Sv: The variables which clients can modify directly. It
contains lots of Attributes.

• Attribute: Attributes belongs to Parameter, for example:

The Figure 5.7 shows the relationship between these abstract objects.

ATTRIBUTE ID ATTRIBUTE NAME ATTRIBUTE TYPE CATEGORY

0 Data Type Static

1 Name String STRING Instance+Dynamic

2 Minimum Value Data Type Instance

3 Maximum Value Data Type Instance

4 Control Law Static

5 Flags UWORD Static

Table 5.1: Attributes belongs to Parameter

Figure 5.7: Composing of structure Node

30

C H A P T E R 5 : C O M P R O M I S E H E A D U N I T

HiQnet Address

The size of the Address field in the HiQnet Header is six bytes. The Device is
indexed by the first two bytes. The Virtual Device is indexed by the third byte.
The Object is indexed by the last four bytes. The Figure 5.8 from Programmers
Guide[10] shows the format of the HiQnet Address.

The Message Type in HiQnet Protocol

Message Type specifies the method the destination device must perform. In
NTG6 head unit, the implemented Message Types is shown in Table 5.2:

The Message Type above 0x100 is used to modify these abstract objects.

5.2.2 Vulnerabilities in HiQnet Protocol

The file libplugincontrolinterfacentg6.so receives HiQnet message through TCP
or UDP ports. In this report, we only introduce the vulnerabilities we tested or
tried to exploit. Vulnerability 1 exists in the locating stage. Vulnerability 2, 3
exists in the analyzing stage, The vulnerability 4 and 5 exists in the processing
stage.

Figure 5.8: HiQnet Addressing

31

C H A P T E R 5 : C O M P R O M I S E H E A D U N I T

Vulnerability 1: The Message Length field in Header is not checked

During the locating stage, the function ComPort::processTcpMessage is
responsible for locating the HiQnet message. It reads the Message Length field
from the header and calculates the next HiQnet message’s address in memory.
However, the function does not check if the Message Length field is valid. As
a result, the attacker can put a large number in this field, resulting in an invalid
memory address read when the function processes the next HiQnet message.
Figure 5.9 shows this vulnerability.

MESSAGE TYPE FUNCTION

0 DiscoInfo
2 GetNetworkInfo
4 RequestAddress
5 AddressUsed
6 SetAddress
7 GoodBye
8 Hello

0x10e SetAttributes
0x10d GetAttributes
0x11b SetSvList
0x11c GetSvList
0x11d SetObjectList
0x11e GetObjectList
0x11a GetVdList
0x113 SvSubscribeAll
0x114 SvUnSubscribeAll
0x101 MultiObjectSvSet
0x100 MultiSvSet
0x103 MultiSvGet
0x10c MultiSvSetAttributes
0x10b MultiSvGetAttributes
0x119 DescribeVd

Table 5.2: Message Type NTG6 supported

32

C H A P T E R 5 : C O M P R O M I S E H E A D U N I T

Vulnerability 2: The count field in MultiSvGet Payload is not checked

The Message Type MultiSvGet is used by clients to retrieve Sv structures
belong to Object or Virtual Device. Figure 5.10 shows the structure of payload
for Message Type MultiSvGet.

During the analyzing stage, the function CHiQnetPayloadMultiSvGet::CHiQnetPay
loadMultiSvGet gets the count field from the payload. The count field represents
how many Sv IDs are stored in this payload. The function then receives every
Sv ID from the payload and store them in a pre-allocated buffer whose size is
0x1420. The Figure 5.11 shows the function of allocating the buffer.

The function CHiQnetPayloadMultiSvGet::CHiQnetPayloadMultiSvGet does not
check the count field. By setting a large count in this field, a heap overflow can

Figure 5.9: Vulnerability code snippet of function ComPort::processTcpMessage

Figure 5.10: Payload for Message Type MultiSvGet

Figure 5.11: Code snippet in function CHiQnetMsg::CHiQnetMsg

33

C H A P T E R 5 : C O M P R O M I S E H E A D U N I T

be triggered. Figure 5.12 shows this vulnerability.

Vulnerability 3: The count field in GetAttributes Payload is not checked

The Message Type GetAttributes used by clients to retrieve Attributes belongs
to Object or Virtual Device. This is the structure of the MultiSvGet payload.
Figure 5.13 shows the structure of payload for Message Type GetAttributes.

During the analyzing stage, the function CHiQnetPayloadGetAttributes::CHiQnet
PayloadGetAttributes get the count field from the payload. The count represents
how many Sv IDs are stored in this payload. The function gets every Attribute ID
from the payload and stores them in a pre-allocated buffer whose size is 0x88.

The function CHiQnetPayloadGetAttributes::CHiQnetPayloadGetAttributes does
not check the count field. By setting a large count in this field, a heap overflow
can be triggered. Figure 5.14 shows this vulnerability.

Figure 5.12: Vulnerability in CHiQnetPayloadMultiSvGet::CHiQnetPayloadMultiSvGet()

Figure 5.13: Payload for Message Type MultiSvGet GetAttributes

34

C H A P T E R 5 : C O M P R O M I S E H E A D U N I T

Vulnerability 4: The count field in MultiSvSet is not checked

The Message Type MultiSvSet is used by clients to set the value of
Sv(Parameter) structures belong to Object or Virtual Device.

During the processing stage, the function CHiQnetPayloadMultiSvSet::CHiQnetPa
yloadMultiSvSet initializes the class CHiQnetPayloadMultiSvSet structure based
on information from payload. The definition of class CHiQnetPayloadMultiSvSet
shows in Table 5.3:

During the processing stage, the function CHiQnetPayloadMultiSvSet::SetSV
s will continue initializing the class CHiQnetPayloadMultiSvSet structure, then
set the value of the Parameter. In this process, the function does not check
the count field in the payload. This means an OOB read will be triggered when
reading from array param_ID. After that, the function CObject::GetSvByAdr
returns the pointer points to Sv structure according to Param_ID, and the

Figure 5.14: Vulnerability in CHiQnetPayloadGetAttributes::CHiQnetPayloadGetAttributes()

OFFSET TYPE COUNT NAME

0x0~0x3FF USHORT 0x200 Param_ID

0x400~0x413

0x414~0x415 USHORT 1 count

0x416~0x417

0x418~0x1417 struct Sv * 0x200 p_Sv

0x1418~0x141F struct Object * 1 p_obj

Table 5.3: Structure CHiQnetPayloadMultiSvSet

35

C H A P T E R 5 : C O M P R O M I S E H E A D U N I T

pointer will be stored to array p_Sv, triggers an OOB write after array p_Sv.
Finally, the pointer p_obj points to Object has tampered with the pointer to Sv
structure. Figure 5.15 shows this vulnerability.

Vulnerability 5: Type confusion when performing MultiSvSetAttributes

Message Type MultiSvSetAttributes can be used to set the Attributes of Sv.

During the processing stage, clients can decide to modify which Attribute by
setting the AID in the payload. The Attributes are all stored in the structure
CStateVariable. The child classes of CStateVariable differs from the type of
Sv. For example, the type of Sv can be BYTE, WORD, ULONG64, or BLOCK. In
MultiSvSetAttributes Payload, the clients need to specify the new type and
new value. If the new type and the old type are different, a type confusion
vulnerability is triggered.

For example, the size of CSvClassOnOffUByte is 0x58. If the new type in
payload is 0xA, the function CHiQnetPayloadMultiSvSetAttributes::SetSVsAttr
ibutes shows in Figure 5.16 will consider class CSvClassOnOffUByte as class
CSvLong64 and call CSvLong64::SetDefaultValue to set the default value of this
Sv.

The function CSvLong64::SetDefaultValue shown in Figure 5.17 will store
the new default value to offset 0x60, resulting in an 8-byte heap overflow.
Therefore, the virtual table pointer of adjacent structures will be tampered with
a new default value.

Figure 5.15: Vulnerability in CHiQnetPayloadMultiSvSet::SetSVs()

Figure 5.16: Code snippet of CHiQnetPayloadMultiSvSetAttributes::SetSVsAttributes()

36

C H A P T E R 5 : C O M P R O M I S E H E A D U N I T

What’s more serious is that, if the new type in the payload is 0x8, the function
CHiQnetPayloadMultiSvSetAttributes::SetSVsAttributes shown in Figure
5.18 will consider class CSvClassOnOffUByte as class CSvBlock and call
CSvBlock::SetDefaultValue to set the default value of this Sv. The type BLOCK
represents an array of bytes. This means the attacker can write any data with
arbitrary length to adjacent structures.

5.2.3 Exploit HiQnet Protocol Vulnerability

On the NTG6 head unit, ASLR is enabled, which means the base address of
libc.so is not fixed, and we need to leak it during the exploit process. The stack
overflow protection is enabled, but all our vulnerabilities are heap overflow. So,
the protection won’t stop us from exploiting. Besides, PIE is not enabled on file

Figure 5.17: Code snippet of CSvLong64::SetDefaultValue()

Figure 5.18: Code snippet of CSvBlock::SetDefaultValue()

37

C H A P T E R 5 : C O M P R O M I S E H E A D U N I T

AudioManager. It is convenient for us to use the gadgets in file AudioManager.

All the vulnerabilities mentioned before are heap overflow bugs. Vulnerability 3
and 5 can be used to tamper with the adjacent structures. This ability can help
us to leak memory and achieve code execution.

Arbitrary Address Read

In the library libPluginControlInterfaceNTG6.so, the string of Name String is
stored in structure CHBString::StringData, which is defined as:

The length field represents the length of this string. After length is tampered
with, the data outside the structure can be leaked, including non-printable
character.

Besides, the structure CStateVariable is used to store the content of Sv. Table 5.4
shows the definition:

The pointer p_chbstring corresponds to Attribute Name String, which AID is 1.
After the pointer is tampered with, the attacker can leak memory data at any
address.

s t r u c t _ _ a t t r i b u t e _ _ ((a l i g n e d (4)))
CHBString::StringData
{
 UInt32 refCnt;
 UInt32 capacity;
 UInt32 size;
 UInt32 length;
 unsigned __int8 charBegin;
 unsigned __int8 charArray[1];
};

OFFSET NAME

0x0 v_pointer

0x8 CHBString::StringData * p_chbstring

...

Table 5.4: Structure CStateVariable

38

C H A P T E R 5 : C O M P R O M I S E H E A D U N I T

Achieve Code Execution

Clients can use The Message Type MultiSvGetAttributes to retrieve the
Attributes, which belong to some Svs. Because class CStateVariable has many
child classes, the function CHiQnetPayloadMultiSvGetAttributes::Serialize will
find the appropriate class function from the virtual table. After the virtual table
is tampered with, the attacker can get the chance to achieve code execution.
The code is shown in Figure 5.19.

The Exploit Process

To overwrite these two structures for further exploit, the memory layout needs
to be manipulated. During the analyzing stage and processing stage, buffers
with many different sizes are allocated, making the heap layout complicated.
However, there is still a chance to control the heap layout.

Both vulnerability 3 and 5 can be used to exploit. However, for vulnerability
3, the buffer will be freed after heap overflow, resulting in an unrelated heap
structure destroyed and a low success rate. Therefore, vulnerability 5 is more
convenient to exploit, because the OOB write buffer is persistent.

Now, it is the time to explain how to utilize the vulnerability 5.

First, we allocate amounts of CStateVariable and CHBString structures on the
heap by adding Sv to Object and setting Name String of Sv. We try to make sure
the size of CStateVariable and CHString are the same by setting the appropriate
length to Name String. In this way, the structure CStateVariable and CHString
can be mixed in memory.

Next, we write the BLOCK full of 0xff bytes with length 1 to heap by utilizing the
vulnerability 5. After that, we retrieve and check all the Name String set before.

Figure 5.19: Code snippet of CHiQnetPayloadMultiSvGetAttributes::Serialize()

39

C H A P T E R 5 : C O M P R O M I S E H E A D U N I T

If all the Name Strings keep unchanged, we add the length of BLOCK by 1 and
try to overwrite again until one of the Name Strings changes. There are two
situations:

• After the length field of CHBString::data is overwritten, The length of Name String
becomes 0xff. Thus, some memory data adjacent to the original Name String string can be
leaked.

• After the last byte of pointer p_chbstring in CStateVariable structure is overwritten, the
Name String value becomes different totally.

For the first case, it is possible to find a CStateVariable in leaked memory.
Then we directly overwrite the pointer p_chbstring in this CStateVariable. For
the second case, the pointer p_chbstring has already been overwritten. So, we
change the pointer to the address within the GOT section of AudioManager, and
then the address of function read() in libc.so can be leaked.

We overwrite the same CStateVariable structure again and tamper the virtual
table with address 0x4A5000. The virtual table is shown in Figure 5.20:

After that, the function am::TAmShTimerCallBack<am::CAmCommonAPIWrapp
er>::Call will be called when performing MultiSvGetAttributes function, which is
shown in Figure 5.21.

Right now, the 3rd QWORD in CStateVariable is considered as the function
pointer. The 2nd QWORD p_chbstring is considered as the parameter. The 4th
QWORD is considered as an extra offset to the parameter.

Before triggering code execution, we overwrite the 3rd QWORD in CStateVariable
to the address of function system(), set 2nd QWORD by resetting the Name

Figure 5.20: Virtual table of class TAmShTimerCallBack<am::CAmCommonAPIWrapper>

40

C H A P T E R 5 : C O M P R O M I S E H E A D U N I T

String to arbitrary Linux command, and overwrite the 4th QWORD to 0x11 to
bypass the header of CHBString::data.

Finally, We can get the reverse shell and run command on the Linux system,
showed in Figure 5.22.

Exploit Head Unit without Firmware

The real attack scenario could be to get a shell from the head unit without
firmware. In this situation, the virtual table’s address, which contains the
function am::TAmShTimerCallBack<am::CAmCommonAPIWrapper>::Call, is
unknown. Also, the offset between read() and system() is unknown. However,
if the CHBString::data structure remains the same, it is still possible to
dump all the memory in process AudioManager, including code segment of
AudioManager and libc.so. Therefore, it is possible to get the address of virtual
address and the offset to system(). The whole exploit process is universal even
for the head unit without firmware.

5.3 Exploit the Browser

Head unit supports a browser application for the driver and passengers on the
touch screen. We can exploit the browser’s vulnerability to get a remote shell of
head unit on actual vehicle.

Figure 5.22: Reversed shell from head unit AudioManager process

Figure 5.21: Function am::TAmShTimerCallBack<am::CAmCommonAPIWrapper>::Call

41

C H A P T E R 5 : C O M P R O M I S E H E A D U N I T

5.3.1 QtWebEngine

In NTG6 head unit, the process /opt/comm/browser/bin/DevCtrlBrowser is
responsible for running the browser application. The result of ldd command
in Figure 5.23 shows that the browser’s UI is designed based on Qt5. The web
engine of the browser is Qt5WebEngine.

According to official documents, V8 is the javascript engine used by
QtWebEngine. Also, the actual process of QtWebEngine is QtWebEngineProcess,
and the render process is a child process of this process. So, a javascript
engine vulnerability can help us get a shell from the head unit with browser_f
user privilege.

5.3.2 Exploit the QtWebEngine

We confirmed that a type confusion vulnerability in V8 also affects
QtWebEngine. This vulnerability is related to optimization features of Array
items, resulting in leaking the address of Object in the array as float or setting
the address of Object in an array with float.

By utilizing this vulnerability, we can execute the shellcode in the browser
process of head unit and get a reverse shell from the head unit with user
browser_f privilege. Figure 5.24 shows the privilege of reverse shell and version
of the head unit.

Figure 5.23: Libraries used by DevCtrlBrowser

Figure 5.24: Reversed shell

42

C H A P T E R 5 : C O M P R O M I S E H E A D U N I T

5.4 Local Privilege Escalation

For the reverse shell from AudioManager service and browser, the privilege is
very limited.

In the audiovideo user context we can do nothing except the audio or
video related operations. Below is AudioManager’s systemd unit file audio
manager.service(parts are omitted for clarity). From the file, we can see that
some restrictions are enabled on the service. These restrictions did limit
AudioManager’s capabilities.

But we found that fine-grained access control mechanism like SELinux or
AppArmor is not enabled in this system. This extended the attack surface. We
used a bug in Linux kernel perf subsystem to escalate our privilege. Usually,
SELinux is enabled on Android. So, the perf subsystem is not accessible by
unprivileged users.

5.4.1 Kernel LPE with A perf Bug

The version of Linux kernel in the system is 3.18.71, which was released on

PermissionsStartOnly=true

application sandboxing
DAC
#As a WAR we change the permissions for these MSG queues, so AudioManager is still able to access them
after it is restarted by systemD
ExecStartPost=-/bin/chmod 660 /dev/mqueue/AudioManagerLevelingDataMsgQ
ExecStartPost=-/bin/chmod 660 /dev/mqueue/AudioManagerResponseMsgQ
ExecStartPost=-/bin/chgrp audio /sys/kernel/debug/tegra_ape/adsp_lpthread/adsp_usage
ExecStartPost=-/bin/chmod g+w /sys/kernel/debug/tegra_ape/adsp_lpthread/adsp_usage

ACL
ExecStartPre=-/usr/bin/setfacl -m u:audiovideo:rw /dev/cmdfifo /dev/rspfifo
ExecStartPre=-/usr/bin/setfacl -R -m u:audiovideo:rwx /var/opt/ent/audio/
CAP

Slice=audio.slice
User=audiovideo
Group=entertain
UMask=0007
SupplementaryGroups=dltgrp thriftgrp k2lgrp evlog hsbgrp audio
CapabilityBoundingSet=CAP_SYS_RESOURCE CAP_IPC_LOCK CAP_SYS_NICE
NoNewPrivileges=false
DevicePolicy=closed
DeviceAllow=/dev/cmdfifo rw
DeviceAllow=/dev/cmdfifo rw
DeviceAllow=/dev/mqueue/* rwm

43

C H A P T E R 5 : C O M P R O M I S E H E A D U N I T

14 Sep, 2017[11]. It’s lagging more than three years from today(2020). So it’s
vulnerable to many security bugs that were fixed in these three years. And
what’s worse, the 3.18 branch is not maintained anymore by upstream[12].

The bug we chose to exploit was a bug in perf subsystem, which has two fixes.
The first fix is an uncompleted fix, which assigned CVE-2016-6786 [13]. This fix
has been applied in this kernel. But there’s a second unapplied fix CVE-2017-
6001 [14].

Without the second fix, the bug is still exploitable.

5.4.2 CVE-2017-6786,6001

KeenLab published the bug analysis and exploit method in PACSEC [15]. Exploit
steps in PACSEC are:

• Trigger race condition in move_group to cause UAF.

• Freeze with futex_wait_queue_me() to avoid kernel Oops.

• Spray heap with ret2dir. Filling malformed perf_event_context_object.

• Wake frozen task with futex_wake() and hijack control flow.

In the head unit, exploit steps need to be adjusted because of Cgroups
restriction.

5.4.3 Bypass Cgroups Restriction

After running our exploit inside the spawned shell from AudioManager, the
exploit was killed by OOM killer in ret2dir heap spray stage.
[621.446516] a.out invoked oom-killer: gfp_mask=0x200d2, order=0, oom_score_adj=0
[621.446538] CPU: 2 PID: 10420 Comm: a.out Tainted: G O 3.18.71 #1
[621.446544] Hardware name: t186-vcm31-cuba (DT)
[621.446549] Call trace:
[621.447144] [<ffffffc0000895d4>] dump_backtrace+0x0/0x130
[621.447152] [<ffffffc000089718>] show_stack+0x14/0x1c
[621.447168] [<ffffffc00088ab78>] dump_stack+0x8c/0xac
[621.447176] [<ffffffc0001602f0>] dump_header.isra.12+0x98/0x1d8
[621.447182] [<ffffffc000160914>] oom_kill_process+0x298/0x41c
[621.447189] [<ffffffc0001b2c44>] mem_cgroup_oom_synchronize+0x610/0x618
[621.447195] [<ffffffc000161020>] pagefault_out_of_memory+0x14/0x74
[621.447201] [<ffffffc00009be5c>] do_page_fault+0x474/0x478
[621.447207] [<ffffffc0000812dc>] do_mem_abort+0x58/0xd4
[621.447210] Task in /audio.slice killed as a result of limit of /audio.slice
[621.447223] memory: usage 1023984kB, limit 1024000kB, failcnt 89981

44

C H A P T E R 5 : C O M P R O M I S E H E A D U N I T

From the log, we can find that the memory size of audio.slice is limited to 1GB.
After some experiments, we figured out that, to successfully spray with ret2dir,
we need to allocate at least 2GB memory in this 8GB system. So we switched
our ret2dir spray method to a traditional kmalloc spray method.

Memory limit is not the only restriction by Cgroups. We found our spawned
shell was killed in about 1 minute, even when we escalate our process to root
or change its parent to init.

systemd tracks service forks using Cgroups. systemd will restart AudioManager
service if it’s not responding for some time. systemd kills all the children in
audio Cgroups. To prevent our shell from being killed, we moved our shell’s
process out of audio Cgroups with the following command:

[621.447227] memory+swap: usage 1023984kB, limit 18014398509481983kB, failcnt 0
[621.447231] kmem: usage 0kB, limit 18014398509481983kB, failcnt 0
[621.447235] Memory cgroup stats for /audio.slice: cache:988792KB rss:35192KB rss_huge:0KB mapped_file:988688KB
writeback:0KB swap:0KB inactive_anon:988616KB active_anon:35320KB inactive_file:8KB active_file:8KB unevictable:0KB
[621.447262] [pid] uid tgid total_vm rss nr_ptes swapents oom_score_adj name
[621.447321] [2507] 1028 2507 5361 333 8 0 0 osmsg_logger
[621.447335] [2562] 1028 2562 5351 316 7 0 0 avtp_2_socket
[621.447341] [2583] 1028 2583 68502 2068 20 0 0 dev-ioamp-route
[621.447375] [3418] 1028 3418 610116 5001 94 0 0 AudioManager
[621.447383] [3578] 1028 3578 348048 2538 60 0 0 Audio
[621.447388] [3580] 1028 3580 280069 2289 36 0 0 AcousticFeedbac
[621.447395] [3589] 1028 3589 40554 868 12 0 0 avtp_2_alsa
[621.447421] [3807] 1028 3807 141016 1515 29 0 0 hdcp_hsvlctl
[621.447446] [4729] 1028 4729 277446 1749 36 0 0 Ringtone
[621.447474] [4792] 1028 4792 217347 1654 40 0 0 AVDiagEngCtrl
[621.447484] [4829] 1028 4829 157720 3165 32 0 0 audio_swdl
[621.447489] [4847] 1028 4847 66582 1996 24 0 0 ar_diag
[621.447584] [5051] 1028 5051 264318 3038 51 0 0 inCarCommunicat
[621.447605] [5345] 1028 5345 125913 2368 29 0 0 handsfreethrift
[621.447642] [6856] 1028 6856 761 486 5 0 0 sh
[621.447647] [6862] 1028 6862 465 96 3 0 0 cat
[621.447653] [6863] 1028 6863 21094 128 6 0 0 dlt-adaptor-std
[621.447661] [7740] 1028 7740 465 93 4 0 0 cat
[621.447675] [7741] 1028 7741 771 115 5 0 0 nc
[621.447680] [7742] 1028 7742 842 536 5 0 0 sh
[621.447686] [7746] 1028 7746 460 20 3 0 0 tshd-arm64
[621.447691] [7766] 1028 7766 557 385 4 0 0 tshd-arm64
[621.447698] [7767] 1028 7767 906 643 4 0 0 bash
[621.447713] [10420] 1028 10420 250299 247327 486 0 0 a.out
[621.447719] Memory cgroup out of memory: Kill process 10420 (a.out) score 968 or sacrifice child

echo $SHELL_PID > /sys/fs/cgroup/systemd/tasks

45

C H A P T E R 5 : C O M P R O M I S E H E A D U N I T

Then we can have a stable reverse shell with root privilege.

For exploiting from browser privilege, there is no cgroup restriction.

46

C H A P T E R 6 : P O S T A T T A C K I N H E A D U N I T

6 Post Attack in Head Unit

This chapter lists what we can do after obtained the root privilege in head unit.
For example, how to unlock vehicle function, unlock anti-theft protection, and
perform vehicle control actions from head unit.

6.1 Anti-Theft Unlock

Process frontend controls UI displayed on the screen. And process SysAct
handles Anti-Theft status changes and notifies all other programs in the
system.

By inspecting DLT log, we found that SysAct will send Anti-Theft status to
frontend.

By searching string literals in file SysAct, we found a relevant function.

Figure 6.1: Anti-Theft DLT log

47

C H A P T E R 6 : P O S T A T T A C K I N H E A D U N I T

Function in Figure 6.2 handles Anti-Theft status changes. Function sub 486140
returns the actual Anti-Theft status.

We patched it to make it always return 2, which is the UNLOCK status.

We overwrite the original SysAct with this patched SysAct, and restart the head
unit. Anti-Theft UI layer disappeared.

Figure 6.2: Anti-Theft status change handing function

Figure 6.3: Function sub 486140

Figure 6.4: Anti-Theft layer disappeared

48

C H A P T E R 6 : P O S T A T T A C K I N H E A D U N I T

6.2 Unlocking Vehicle Functions

In Anti-Theft mode, functions like navigation, CarPlay, CarLife are disappeared.
Even if Anti-Theft is unlocked, they will not show up.

We can activate these functions with DLT injection. DLT daemon listens on port
3490. Using the tool dlt-viewer, we can invoke DLT injection callbacks on the
system.

SysAct registered DLT injection callback with function dlt_register_injection _
callback. Passing Service ID 0x1011 and device key as Data will invoke a
callback to unlock vehicle functions. The device key can be found via the
diagnostic tool.

On some head units, the device key is deleted. We can bypass device key
verification by patching SysAct binary. We locate the code by searching string
literal in Figure 6.6. By patching the if condition, we can bypass device key
verification.

Figure 6.5: DLT injection dialog

Figure 6.6: Code for verifying device key

49

C H A P T E R 6 : P O S T A T T A C K I N H E A D U N I T

6.3 Engineering Mode

There are two hidden menus in NTG6 head unit.

One is called ’Dealer Mode’. It can be easily opened by pressing combination
keys on the touchpad or clicking a specific touch screen area. In this mode,
there are various submenus mostly to view the status of the vehicle. It did not
give much useful information or functions to us.

There is another mystery menu called ’Engineering Mode’. We found some
videos about how to open this menu on ancient Mercedes-Benz models. But
we did not found anyone mentions this menu on the newest vehicle model we
were working on. But we believed there should be such a menu on this system.

We searched the file system we dumped for clues about this menu. We found
there is a folder contains information about UI. There is a README.md file that
describes keys to open various menus. But the keys are all PC keyboard keys.
We tried to connect a USB keyboard to the head unit. But head unit says it does
not support this kind of device.

Figure 6.7: Dealer Mode menu

50

C H A P T E R 6 : P O S T A T T A C K I N H E A D U N I T

At that time, we already had a shell of the head unit. So we patched the
system to make it accepts a USB keyboard. We also patched system binaries
to make the system accept key input events. We tried keys the README.md
file described and most of the keys work except key ’E’, which is used to open
’Engineering Mode’.

Figure 6.8: part of README.md file

51

C H A P T E R 6 : P O S T A T T A C K I N H E A D U N I T

Then we analyzed more UI binary codes. We found to open this menu, a vehicle
function must be activated first. We activated this with the same method we
activated CarPlay and other functions.

After activation, we finally got ’Engineering Mode’ opened. In this menu, more
functions are provided to tweak the head unit parameters, including variant
coding.

6.4 Persistent Backdoor

Leaving a backdoor in the car can be more convenient for future testing. Disk
integrity protection like dm-verity is not enabled in this system. So we can
remount the root partition to make it writable and leave a persistent backdoor.
By adding commands to a startup script, our backdoor will execute during
boot.

6.5 Display Screen Tampering

Figure 6.9: Engineering Mode menu

mount -o rw,remount /
cp /tmp/backdoor /usr/sbin/
echo -e ’\n/usr/bin/backdoor’ >> /usr/sbin/configure_broadcom.sh

52

C H A P T E R 6 : P O S T A T T A C K I N H E A D U N I T

On NTG6 head unit, the MMB broad runs two Linux systems based on
virtualization provided by Nvidia. The primary Linux system and the display
server. The display server’s IP is 192.168.210.121. The main Linux system’s
IP of interface hv0 is 192.168.210.122. On primary Linux system, the process
frontend is designed based on Qt5. The rendered graphic data by frontend
will be transferred to display server and finally display on the right half screen.
Similarly, the process icman is responsible for rendering the images on the left
half screen.

In our test, we replaced frontend and icman with our custom compiled binary
based on Qt. We should then set an appropriate environment variable to
transfer the graphic image to the display server by the libraries. The commands
is as follows.

Finally, our custom images will display on the touchscreen. Shown in Figure 6.10

kill -9 ‘pidof frontend‘;
export PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin export NOTIFY_SOCKET=/run/
systemd/notify
export WATCHDOG_PID=4269
export WATCHDOG_USEC=45000000
export HOME=/home/hmi
export LOGNAME=hmi
export USER=hmi
export SHELL=/sbin/nologin
export LD_LIBRARY_PATH=/tmp/:/opt/hmi/lib export EGLSTREAM_INI_DIR=/etc
export QT_QPA_PLATFORM=eglfs
export QT_QPA_EGLFS_CONNECTOR_ID=0 export QT_QPA_EGLFS_PLANE_ID=2
export QSG_TRANSIENT_IMAGES=1
export QV4_MM_OVERALLOCATION=50
export QV4_MM_MAXBLOCK_SHIFT=1
export QV4_MM_MAX_CHUNK_SIZE=65536 export DISPLAY_VM=1
export DISPLAY_IP=192.168.210.121 /tmp/show_keen_logo

Figure 6.10: Custom images

53

C H A P T E R 6 : P O S T A T T A C K I N H E A D U N I T

6.6 RH850 Denial of Service

In MMB, /dev/ttyTHS3 is one of RH850 controlling serial port. We uploaded the
GNU screen to the MMB system and opened this serial port with command
screen /dev/ttyTHS3 115200. A warning displays on the screen, and the system
reboots after 10 seconds. We can trigger this reboot to achieve a DoS attack.

6.7 Perform Vehicle Control Actions

After compromising the head unit, we were interested in how to perform
car control actions. Usually, the direct method is to send CAN messages to
Interior CAN (CAN-B) from head unit. But, for Mercedes-Benz A200L cars, the
architecture is more complicated.

On the Base Board of the head unit, there is an RH850 chip R7F7015223. It is
responsible for transmitting CAN messages to User interface CAN (CAN-HMI).
The chip connects to the host CPU through serial and runs an RTOS with library
LWIP. The host CPU communicates with RH850 through a virtual Ethernet
interface based on PPP over serial. Then, many processes will establish lots of
TCP connections between the host CPU and RH850.

Figure 6.11: Notification before reboot

54

C H A P T E R 6 : P O S T A T T A C K I N H E A D U N I T

First, we need to figure out how to send arbitrary CAN messages on CAN-
HMI. This requirement can be satisfied by finding the packet format of sending
arbitrary CAN messages if the RH850 chip supports this function or trying to
compromise RH850, for example, upgrading a custom firmware.

Second, we may need to compromise the gateway Electronic Ignition
Switch(EIS), because EIS acts as a firewall which drops insecure CAN message.
After that, the compromised EIS can transfer this unsecured CAN message
from CAN-HMI to CAN-B.

We can see that it is a long way to send arbitrary CAN messages to CAN-B. In
contrast, we chose a more direct approach to prove we compromised head
unit. On Mercedes-Benz A200L cars, there is a voice control system. Driver and
passengers can directly control the vehicle by speaking. Audio is processed
by head unit, then a vehicle control command sent to RH850 from some
processes. However, we already compromised the head unit. We can directly
send the vehicle control commands to RH850 as if there is a voice control
request.

To verify our thought, we captured all the TCP packets sent to RH850 while
performing vehicle control actions. Finally, we got the TCP packets from a
TCP connection sent by process k2lacsdaemon. Injecting code into process
k2lacsdaemon and replaying these packets can trigger the specified vehicle
control actions. The vehicle control actions we successfully triggered and the
TCP packets are shown in Table 6.1.

55

C H A P T E R 6 : P O S T A T T A C K I N H E A D U N I T

ACTION PACKET IN HEXADECIMAL

open ambient light

00 00 00 1f .. 3f 3f
00 00 00 1f .. 3f 3f
00 00 00 1f .. 3f 3f
00 00 00 1f .. 3f 3f

close ambient light

00 00 00 1f .. 3f 3f
00 00 00 1f .. 3f 3f
00 00 00 1f .. 3f 3f
00 00 00 1f .. 3f 3f

open driver reading light 00 00 00 17 3f 00
close driver reading light 00 00 00 17 3f 00

open passenger reading light 00 00 00 17 7f 00
close passenger reading light 00 00 00 17 3f 00

open sunshade cover 00 00 00 15 3f 3f
open back-seat passenger light 00 00 00 17 3f 00
close back-seat passenger light 00 00 00 17 3f 00

Table 6.1: TCP packets for vehicle controls

P A R T 3
T-BOX 3

57

C H A P T E R 7 : C O M P R O M I S E T- B O X

7 Compromise T-Box

This chapter shows two attack attempts for two attack surfaces, the Wi-Fi and
CAN bus of T-Box in the direction from the outside to the internal system.

7.1 Compromise Host from Wi-Fi chip

To compromise the host system from Wi-Fi chip in a real attack case, an
attacker need to achieve code execution on Wi-Fi chip first. For research
purposes, we can also load a custom firmware to run our code on the Wi-Fi
chip.

We loaded our custom firmware bcm_firmware_H2.bin on T-Box for reproducing
the attack process by Project Zero’s research. The firmware will try to overwrite
the host physical memory beginning from address 0xA59E8000, which
corresponds to kernel address 0xC00E8000.

The original kernel code snippet shows in Figure 7.1.

After the attack, the crash log on serial is shown in Figure 7.2.

Figure 7.1: Original code of kernel

58

C H A P T E R 7 : C O M P R O M I S E T- B O X

The result shows that the normal kernel code already tampered with some
structures or wireless packets by Wi-Fi chip. So, the T-Box is also vulnerable to
the same DMA issue found by Project Zero.

Since the kernel code can be modified, this issue can be used to compromise
the T-Box host system from a compromised Wi-Fi chip.

We have successfully verified this attack on version E311.4.

7.2 Trigger Memory Corruption From SH2A Chip

On T-Box, the blockIpcServer communicates with SH2A through the serial /dev/
ttyAMA1. During the communication between the process blockIpcServer and
SH2A chip, there is a concept called channel on both sides of SH2A firmware
and the Linux system.

Figure 7.2: The crash log of kernel

59

C H A P T E R 7 : C O M P R O M I S E T- B O X

7.2.1 Message Format between SH2A MCU and Host

The message packet between SH2A MCU and Host consists of header and
body.

The size of the header is 8 bytes, and its format is shown in Figure 7.3:

The first two bytes are fixed. The 6th byte is the length of the payload. The 7th

byte represents the channel number of this packet.

The format of payload varies by the number of channels.

7.2.2 Out-of-bound Vulnerability in RemoteDiagnosis

The process RemoteDiagnosisApp registered channel 10 RemoteDiagnosis with
blockIpcServer. There is a vulnerability when the process RemoteDiagnosisApp
parses the payload of channel 10 sent by SH2A MCU and transferred by
blockIpcServer. The payload of channel 10 is shown in Figure 7.4:

An array OOB read exists in function get_ovci_chn, which is shown in Figure 7.5.

Figure 7.3: Header of packet transmit in channel

Figure 7.4: Format of payload for channel RemoteDiagnosis

Figure 7.5: Code snippet triggers OOB read

60

C H A P T E R 7 : C O M P R O M I S E T- B O X

The size of the array chn_table is 88. Therefore, if the argument idx is above 88,
an OOB read happens.

The table array chn_table contains the channel index related to the ovci index.
This means the result returned from function get_ovci_chn() may be above 1,
according to the data outside the array.

Then the ovci_data is stored in the ovci_data_area array, resulting in an OOB
write. The code to trigger OOB write shows in Figure 7.6.

According to the memory layout, some structures and pointers can be
overwritten outside the array chn_table. On T-Box version E511.6, pointers are
more random than version E334.2 since ASLR is enabled on version E511.6. We
didn’t try to exploit this vulnerability on version E511.6.

Figure 7.6: Code snippet that triggers OOB write

61

C H A P T E R 8 : P O S T A T T A C K I N T- B O X

8 Post Attack in T-Box

This chapter will introduce two attack processes that target the SH2A MCU on
T-Box. The SH2A chip is responsible for transmitting CAN messages to CAN-D
CAN bus. By utilizing the vulnerabilities in SH2A firmware, we can send arbitrary
CAN messages to CAN-D CAN bus and flash a custom firmware on SH2A MCU.

The precondition for both attacks that we will present is that the attacker
should compromise the T-Box’s Linux system first. In our research, we failed
to find a vulnerability to compromise the Linux system. However, we managed
to get a development version of T-Box hardware with debug shell enabled. The
need to actively gain code execution on the NAD prevented this vulnerability
from being exploited in a production car.

8.1 Sending Arbitrary CAN message from T-Box

This section will introduce the CAN message transmission logic on T-Box and
the vulnerability in SH2A firmware. We will explain what we can do by utilizing
this vulnerability, including transmitting arbitrary CAN messages on T-Box and
bypassing firmware code signing during upgrading.

8.1.1 CAN Bus Message Transmit Logic

On T-Box Board, the SH2A chip connects to the CAN bus CAN-D, which
connects to the gateway EIS and OBD diagnostic port. The SH2A chip connects
to the host CPU through serial. Therefore, the SH2A chip is responsible for
receiving the message from the host CPU, converting the message from the
host CPU to the CAN message, and transmitting the CAN message on CAN
bus, for our car CAN-D.

In the Linux system, the device file /dev/ttyAMA1 represents this serial port.
It is always opened by the process blockIpcServer. This process acts as an
IPC server and communicates with other client processes through Boost IPC
shared memory. For example CANDL, UpdateManager, DiagnosisProxyApp,

62

C H A P T E R 8 : P O S T A T T A C K I N T- B O X

RemoteDiagnosisApp, etc. So, when the client processes want to send CAN
message, they send the message to blockIpcServer. Then, the message is
transferred to the SH2A chip. Finally, the chip constructed the CAN message
and transmitted it to CAN bus via CANTP protocol.

The chip configures different CAN IDs according to the channel number of the
message received from the serial. Once the client process is launched, they
will register the channel number with blockIpcServer. Then, blockIpcServer will
deliver the message to the corresponding client process. On the SH2A chip,
there should be a table that describes the correspondence between CAN ID
and channel number.

The following analysis is based on the firmware version shown in Table 8.1:

8.1.2 Vulnerability in SH2A Firmware

The SH2A firmware will process the message from host. In our research, we
found a vulnerability when the firmware process the the payload for a specific
channel.

The vulnerability is that the function does not check the length field in the
payload, resulting in a stack overflow when function memcpy() copies data with
a considerable length.

By utilizing the vulnerability, we successfully achieved code execution in the
chip. The most important is that we managed to make our shellcode run more
stable. Therefore, after our shellcode finish running, the chip still works well
instead of crashes.

PARTS VERSION

Software Part Number 2479026602

TCU Core E334.2

SH2 18232C

Table 8.1: Version of T-Box firmware

63

C H A P T E R 8 : P O S T A T T A C K I N T- B O X

8.1.3 Transmit Arbitrary CAN Message to CAN Bus

Since we got code execution in SH2A chip, it is possible to transmit arbitrary
CAN messages to CAN bus. Our shellcode will configure the CAN interface
registers on Channel 1 Mailbox 31 to transmit CAN message to CAN bus.

Figure 8.1 shows the result. It proved that it is possible to transmit arbitrary
CAN messages on T-Box.

8.2 Flashing Custom Firmware on SH2A MCU

A common practice to transmit arbitrary CAN messages is upgrading
the firmware of the MCU with patched firmware. To prevent upgrading a
custom firmware, more and more system designers introduced the code
signing mechanism. On T-Box, we also found the code signing mechanism is
introduced on newer firmware of SH2A MCU, for example, E409.6 and E511.6.
On these versions, there is a signature attached to the files uHERMES.bin and
uapp.bin. This subsection will introduce the issues related to the firmware only
supports the code signing mechanism. An attacker can use the first issue to
flash an older firmware and exploit the vulnerability in this older firmware to
flash a custom firmware.

The following analysis based on these firmware versions shown in Table 8.2:

Figure 8.1: Arbitrary CAN message transmitted

64

C H A P T E R 8 : P O S T A T T A C K I N T- B O X

8.2.1 Firmware Downgrade Vulnerability

The process UpdateManager is responsible for upgrading the firmware of SH2A
MCU by communicating with SH2A MCU through the channel BIPC_SWDL_SH2.
In file UpdateManager of version E511.6, the function at 0x83b38 is response
for upgrading SH2A BIOS(uapp.bin) and SH2 Application(uHERMES.bin). We
tried downgrading SH2A firmware from 19472B to 18514B. The 19472B version
SH2A firmware verifies that the signature of 18514B version SH2A firmware
is valid because the RSA public keys in these two versions are the same. But
there is no version checking during upgrading on version 19472B, resulting in a
firmware downgrade attack. The upgrade log is shown below:

SH2 VERSION TCU CORE VERSION VERSION

18514B E409.6 2479027703

19472B E511.6 2479022604

Table 8.2: Version of T-Box firmware

Aug 25 22:10:43.035 UpdateManager[1157]: [info:] Updating SH2 applications...
Aug 25 22:10:43.037 UpdateManager[1157]: [info:] File read successfully. Size 530848
Aug 25 22:10:43.038 UpdateManager[1157]: [info:] ---------------- START SH2 session ----------------
Aug 25 22:10:43.038 UpdateManager[1157]: [info:] Open IPC channel for SWDL
Aug 25 22:10:43.039 UpdateManager[1157]: [info:] Send message "start"
Aug 25 22:10:43.042 UpdateManager[1157]: [info:] Send chunk size 1024
Aug 25 22:10:43.044 UpdateManager[1157]: [info:] Send file size 530848
Aug 25 22:10:43.046 UpdateManager[1157]: [info:] Send write address 0x00000016
Aug 25 22:10:43.049 UpdateManager[1157]: [info:] Sending firmware file
Aug 25 22:10:43.049 UpdateManager[1157]: [info:] SH2 image 0% complete
Aug 25 22:10:45.780 UpdateManager[1157]: [info:] SH2 image 5% complete
Aug 25 22:10:48.888 UpdateManager[1157]: [info:] SH2 image 10% complete
Aug 25 22:10:51.618 UpdateManager[1157]: [info:] SH2 image 15% complete
Aug 25 22:10:54.732 UpdateManager[1157]: [info:] SH2 image 20% complete
Aug 25 22:10:57.455 UpdateManager[1157]: [info:] SH2 image 25% complete
Aug 25 22:11:00.582 UpdateManager[1157]: [info:] SH2 image 30% complete
Aug 25 22:11:03.311 UpdateManager[1157]: [info:] SH2 image 35% complete
Aug 25 22:11:06.440 UpdateManager[1157]: [info:] SH2 image 40% complete
 1157 0 0% S 9 23304K 4912K root /cust/app/bin/UpdateManager
Aug 25 22:11:09.166 UpdateManager[1157]: [info:] SH2 image 45% complete
Aug 25 22:11:12.243 TrigLogFiles[772]: [info:] Process UpdateManager thread count 9
Aug 25 22:11:12.306 UpdateManager[1157]: [info:] SH2 image 50% complete
Aug 25 22:11:15.038 UpdateManager[1157]: [info:] SH2 image 55% complete
Aug 25 22:11:18.168 UpdateManager[1157]: [info:] SH2 image 60% complete
Aug 25 22:11:20.887 UpdateManager[1157]: [info:] SH2 image 65% complete
Aug 25 22:11:23.507 UpdateManager[1157]: [info:] SH2 image 70% complete
Aug 25 22:11:26.497 UpdateManager[1157]: [info:] SH2 image 75% complete

65

C H A P T E R 8 : P O S T A T T A C K I N T- B O X

8.2.2 Bypass Code Signing Check During Upgrading

During upgrading, the u-boot format files: uHERMES.bin and uapp.bin will be
uploaded to SH2A MCU. Then SH2A MCU will verify the signature of the image.
Specifically, the SH2A MCU will decrypt the signature with the RSA public
key and compare the decrypted result with the image’s sha256 hash. For the
18514B version uHERMES.bin, the verified result is shown below:

Aug 25 22:11:29.108 UpdateManager[1157]: [info:] SH2 image 80% complete
Aug 25 22:11:32.012 UpdateManager[1157]: [info:] SH2 image 85% complete
Aug 25 22:11:34.653 UpdateManager[1157]: [info:] SH2 image 90% complete
Aug 25 22:11:37.675 UpdateManager[1157]: [info:] SH2 image 95% complete
Aug 25 22:11:40.268 UpdateManager[1157]: [info:] SH2 image 100% complete
Aug 25 22:11:42.876 UpdateManager[1157]: [info:] ---------------- END SH2 session ----------------
Aug 25 22:11:44.877 UpdateManager[1157]: [info:] Updating SH2 BIOS...
Aug 25 22:11:44.877 UpdateManager[1157]: [info:] File read successfully. Size 103840
Aug 25 22:11:44.877 UpdateManager[1157]: [info:] ---------------- START SH2 session ----------------
Aug 25 22:11:44.877 UpdateManager[1157]: [info:] Open IPC channel for SWDL
Aug 25 22:11:44.877 UpdateManager[1157]: [info:] Send message "start"
Aug 25 22:11:44.880 UpdateManager[1157]: [info:] Send chunk size 1024
Aug 25 22:11:44.883 UpdateManager[1157]: [info:] Send file size 103840
Aug 25 22:11:44.885 UpdateManager[1157]: [info:] Send write address 0x0000000B
Aug 25 22:11:44.885 UpdateManager[1157]: [info:] Sending firmware file
Aug 25 22:11:44.885 UpdateManager[1157]: [info:] SH2 image 0% complete
Aug 25 22:11:45.364 UpdateManager[1157]: [info:] SH2 image 5% complete
Aug 25 22:11:45.821 UpdateManager[1157]: [info:] SH2 image 10% complete
Aug 25 22:11:46.677 UpdateManager[1157]: [info:] SH2 image 15% complete
Aug 25 22:11:47.139 UpdateManager[1157]: [info:] SH2 image 20% complete
Aug 25 22:11:47.605 UpdateManager[1157]: [info:] SH2 image 25% complete
Aug 25 22:11:48.067 UpdateManager[1157]: [info:] SH2 image 30% complete
Aug 25 22:11:48.918 UpdateManager[1157]: [info:] SH2 image 35% complete
Aug 25 22:11:49.381 UpdateManager[1157]: [info:] SH2 image 40% complete
Aug 25 22:11:49.842 UpdateManager[1157]: [info:] SH2 image 45% complete
Aug 25 22:11:50.292 UpdateManager[1157]: [info:] SH2 image 50% complete
Aug 25 22:11:51.154 UpdateManager[1157]: [info:] SH2 image 55% complete
Aug 25 22:11:51.613 UpdateManager[1157]: [info:] SH2 image 60% complete
Aug 25 22:11:52.065 UpdateManager[1157]: [info:] SH2 image 65% complete
Aug 25 22:11:52.530 UpdateManager[1157]: [info:] SH2 image 70% complete
Aug 25 22:11:53.412 UpdateManager[1157]: [info:] SH2 image 75% complete
Aug 25 22:11:53.859 UpdateManager[1157]: [info:] SH2 image 80% complete
Aug 25 22:11:54.325 UpdateManager[1157]: [info:] SH2 image 85% complete
Aug 25 22:11:55.186 UpdateManager[1157]: [info:] SH2 image 90% complete
Aug 25 22:11:55.633 UpdateManager[1157]: [info:] SH2 image 95% complete
Aug 25 22:11:56.087 UpdateManager[1157]: [info:] SH2 image 100% complete
Aug 25 22:11:58.640 UpdateManager[1157]: [info:] ---------------- END SH2 session ----------------

PublicKey(38990162527143653598206405503588261367090651735139171091123904246849069176160665864743420596903127446691269669
01890463776089179396118208091597174510582150600243617897873812571846336406344135322839072671118284209784327134213139294
72229664816191354634180564266158377616818162781828911595177876057401702279974659713149443739048023404441945562072661204
44638203597323297053899424906965598730996084793987320597909782240653274121177799419549657089553790790149942954072518193
10154726845731935204239811068748652991412193990184233025245543906372741226199119822180684959022565886463174914665332939
24542518487115217655985900178703599434292773247822580151522875666168828439169056370275503811204568762921500059122136079
85863942100673321891674402573097922160165782700169740115850698065421564279817089059175579551810912955912032418837353938
37725972174327987885303186945382814292158131717484266882863584856044460212891225508189414697758273973, 65537)

66

C H A P T E R 8 : P O S T A T T A C K I N T- B O X

In the subsection 8.1, we utilized a vulnerability to achieve code execution.
We can also use this vulnerability to bypass the code signing check while
upgrading and flash a custom firmware. The u-boot file uHERMES.bin will be
loaded to address 0x3C000000 after SH2A MCU booted. The address is the
start of Large-Capacity RAM shown in Figure.8.2. The memory is writeable
and cache-disabled. So, it is possible to modify the code segment in memory
directly.

First, we trigger the vulnerability to achieve code execution on SH2A MCU by
sending payload from Linux to serial ttyAMA1. Then, in our exploit, we patched
the instruction’s opcode at 0x3c052a34 in Figure 8.3 from ”e6 20” to ”e6 00” to
bypass the comparison between sha256 hash and RSA decrypt result. After
that, arbitrary custom firmware can be upgraded successfully.

Signature: 101216183547073293254412974757680279738917718933794752666298208307394634586958614151225530497101112981190398
7719454415786295596308522 681344892458421403726260770083706381720784801004067396377397560773918928259194126438455714071
2519547594143781510220874627791182740503 417364284654490669124716546891733527862713344482342705596902338431028112239219
3738271932239040180282806961859671895283300854301214364 490488247450538240494862724907498158797382117628650397140002940
8874648672221067120699307648274767855728920588388801037214786347368094 632967817768319799667658289736403249926534567919
7313998965774950176225533875807031880312900143325305886825997908935923241637108274310 165097888437763662791633910200092
4680068855107366034170560399498442923325937645002191505971775470523665754346086103139212701515425351 985876556371337938
5567545408159135725649301498583217831189625787337165643408551100857946282788168862122405052118963389608789926

Decrypt result: 1ff
ff
ff003031300d
0609608648016503040201050004209d1142bb03a4e3331d12c1eed2c8743f2f70d2e1a92f2125336a410386e5171f

SHA256 of uHERMES.bin (exclude attached signature):
9d1142bb03a4e3331d12c1eed2c8743f2f70d2e1a92f2125336a410386e5171f

Figure 8.2: Address Spaces of Large-Capacity RAM

Figure 8.3: Code snippet to compare sha256 hash and RSA decrypt result

67

C H A P T E R 8 : P O S T A T T A C K I N T- B O X

The following log from serial was generated during the upgrading process from
18514B version firmware to a custom firmware we modified based on 18514B
version firmware.
00005b70 af 52 38 13 6f 09 f8 0a 0a 44 6f 77 6e 6c 6f 61 |.R8.o....Downloa|
00005b80 64 69 6e 67 2e 2e 2e f2 87 07 d1 f8 0a 43 48 55 |ding.........CHU|
00005b90 4e 4b 20 73 69 7a 65 3a 20 30 78 30 30 30 30 30 |NK size: 0x00000|
00005ba0 34 30 30 20 28 31 30 32 34 20 64 65 63 29 f2 87 |400 (1024 dec)..|
00005bb0 1d 07 d2 04 f8 0a 4c 45 4e 3a 20 30 78 30 30 30 |......LEN: 0x000|
00005bc0 38 31 39 41 30 20 28 35 33 30 38 34 38 20 64 65 |819A0 (530848 de|
00005bd0 63 29 f2 87 1f 07 d3 08 19 a0 f8 0a 43 48 55 4e |c)..........CHUN|
00005be0 4b 53 3a 20 30 78 30 30 30 30 30 32 30 37 20 28 |KS: 0x00000207 (|
00005bf0 35 31 39 20 64 65 63 29 f2 87 1f 07 d4 02 07 f8 |519 dec)........|
00005c00 0a 50 61 72 74 69 74 69 6f 6e 3a 20 41 50 50 4c |.Partition: APPL|
00005c10 31 f2 87 21 07 d5 f8 f2 87 83 07 d8 01 fe f8 f2 |1..!............|
...
00005fc0 66 07 d8 f8 f2 8f 31 07 ea f8 f2 8f 59 07 da 19 |f.....1.....Y...|
00005fd0 a0 f8 0a 44 6f 77 6e 6c 6f 61 64 20 63 6f 6d 70 |...Download comp|
00005fe0 6c 65 74 65 20 40 20 30 78 30 30 30 45 31 39 41 |lete @ 0x000E19A|
00005ff0 30 20 77 69 74 68 20 30 78 30 30 30 38 31 39 41 |0 with 0x000819A|
00006000 30 20 62 79 74 65 73 20 6c 65 6e 67 74 68 f2 80 |0 bytes length..|
00006010 13 52 42 09 5e f8 f2 80 13 52 42 0a 01 39 f8 f2 |.RB.^....RB..9..|
00006020 80 13 52 39 17 f8 f2 80 13 52 41 16 f8 f2 80 13 |..R9.....RA.....|
00006030 52 38 13 7e 04 8d f8 0a 0a 44 6f 77 6e 6c 6f 61 |R8.~.....Downloa|
00006040 64 69 6e 67 2e 2e 2e f2 80 2d 07 d1 f8 0a 43 48 |ding.....-....CH|
00006050 55 4e 4b 20 73 69 7a 65 3a 20 30 78 30 30 30 30 |UNK size: 0x0000|
00006060 30 34 30 30 20 28 31 30 32 34 20 64 65 63 29 f2 |0400 (1024 dec).|
00006070 80 30 07 d2 04 f8 0a 4c 45 4e 3a 20 30 78 30 30 |.0.....LEN: 0x00|
00006080 30 31 39 35 41 30 20 28 31 30 33 38 34 30 20 64 |0195A0 (103840 d|
00006090 65 63 29 f2 80 33 07 d3 01 95 a0 f8 0a 43 48 55 |ec)..3.......CHU|
000060a0 4e 4b 53 3a 20 30 78 30 30 30 30 30 30 36 36 20 |NKS: 0x00000066 |
000060b0 28 31 30 32 20 64 65 63 29 f2 80 33 07 d4 66 f8 |(102 dec)..3..f.|
000060c0 0a 50 61 72 74 69 74 69 6f 6e 3a 20 48 42 42 49 |.Partition: HBBI|
000060d0 4f 53 f2 80 35 07 ec f8 f2 80 3e 07 d8 64 f8 f2 |OS..5.....>..d..|
000060e0 80 c6 07 d8 5a f8 f2 81 27 07 d8 50 f8 f2 81 ad |....Z...'..P....|
...
00006150 f2 84 f2 07 d8 f8 f2 85 bd 07 ea f8 f2 85 e4 07 |................|
00006160 da 95 a0 f8 0a 44 6f 77 6e 6c 6f 61 64 20 63 6f |.....Download co|
00006170 6d 70 6c 65 74 65 20 40 20 30 78 30 30 30 35 39 |mplete @ 0x00059|
00006180 35 41 30 20 77 69 74 68 20 30 78 30 30 30 31 39 |5A0 with 0x00019|
00006190 35 41 30 20 62 79 74 65 73 20 6c 65 6e 67 74 68 |5A0 bytes length|
000061a0 f2 85 ef 52 39 f8 f2 85 ef 52 41 f8 f2 85 ef 52 |...R9....RA....R|
000061b0 38 13 8f 03 f8 f2 86 c7 03 0a 04 06 f8 f2 87 e3 |8...............|
000061c0 52 39 2e f8 f2 87 e3 52 41 f8 f2 87 e3 52 38 13 |R9.....RA....R8.|
000061d0 6e 08 f9 f8 f2 89 d7 52 39 2e f8 f2 89 d7 52 41 |n......R9.....RA|
000061e0 f8 f2 89 d7 52 38 13 6e 08 fb f8 f2 8a e7 03 04 |....R8.n........|
000061f0 02 f8 f2 8a e8 02 10 f8 f2 8a f5 06 56 f8 f2 8a |............V...|
00006200 f5 02 f8 f2 8a f5 02 13 0a 49 50 4c 2c 20 31 34 |.........IPL, 14|
00006210 33 38 31 41 20 53 65 70 20 31 35 20 32 30 31 34 |381A Sep 15 2014|
00006220 20 31 34 3a 34 33 3a 35 30 0a 0a 73 74 61 72 74 | 14:43:50..start|
00006230 0a 62 6f 6f 74 20 41 50 50 4c 0a 53 74 61 72 74 |.boot APPL.Start|
00006240 69 6e 67 20 48 45 52 4d 45 53 20 32 2e 31 20 61 |ing HERMES 2.1 a|
00006250 70 70 6c 69 63 61 74 69 6f 6e 20 28 76 65 72 73 |pplication (vers|
00006260 69 6f 6e 3a 20 6b 65 65 6e 66 77 29 0a 48 61 72 |ion: keenfw).Har|
00006270 64 77 61 72 65 20 63 6f 64 65 3a 20 33 0a 0a 2a |dware code: 3..*|
00006280 2a 2a 20 43 41 52 4c 49 4e 45 5f 32 31 33 20 20 |** CARLINE_213 |
00006290 2d 20 53 54 41 52 32 2e 33 21 0a 0a 2a 2a 2a 20 |- STAR2.3!..*** |
000062a0 48 59 42 52 49 44 2d 43 61 6e 20 4e 4f 54 20 41 |HYBRID-Can NOT A|
000062b0 43 54 49 56 45 20 21 0a 29 0a 0a 4f 53 20 53 74 |CTIVE !.)..OS St|
000062c0 61 72 74 55 70 0a 0a 0a 61 64 6a 75 73 74 44 61 |artUp...adjustDa|
000062d0 74 61 20 6c 6f 61 64 65 64 20 66 72 6f 6d 20 53 |ta loaded from S|
000062e0 45 43 55 52 45 20 21 0a 0a 49 50 4c 2c 20 31 34 |ECURE !..IPL, 14|

68

C H A P T E R 8 : P O S T A T T A C K I N T- B O X

The log shows that we successfully uploaded uHERMES.bin and uapp.bin.
These two images are also passed the code signing verify, and our custom
firmware runs after reboot.

P A R T 4
CHAINING 4

70

C H A P T E R 9 : E X P L O R A T O R Y R E S E A R C H

9 Exploratory Research

On Mercedes-Benz A200L cars, the vehicle architecture is very complex. There
are many ECUs on this model car. To better understand the security of the
vehicle, we tried to search for some special modules around the infotainment.
We choose the CSB system in head unit, which supports digital radio function
for MMB, since the digital radio is an interesting wireless attack vector. We also
target the airbag control module(ACM) because it connects to CAN-HMI CAN
bus, which is the same as head unit. We wondered whether and how head unit
could affect the ACM.

9.1 Digital Radio Research

The head unit supports FM/AM radio broadcasts for most regions. For some
particular areas, Digital Audio Broadcasting(DAB) and HD Radio also can be
supported. We tried to set up a radio transmitter for both FM and DAB.

9.1.1 FM

During FM radio broadcasting, a small amount of digital information can be
transferred with the audio and decoded by the radio receiver, which brings an
attack surface. For head unit, the process Tuner in CSB system is responsible
for decoding this information.

Radio Data System (RDS) is the communications protocol standard for
embedding such digital information in conventional FM radio broadcasts[16].
The frequency 87.5 to 108.0 MHz is used for FM broadcasting. On raspberry,
the maximum GPIO frequency is up to 125MHz. The project PiFmRds[17] makes
it possible to transmit FM radio from a Raspberry Pi.

According to the REAMDE.md file, the environment can be built by the following
steps.

71

C H A P T E R 9 : E X P L O R A T O R Y R E S E A R C H

• Connect antenna to GPIO 4 (pin 7)

• Download and compile the project

• Run pi_fm_rds with appropriate parameters

In our test, we run pi_fm_rds with the following command.

Figure 9.1 shows that the head unit found our customs FM signals.

9.1.2 Digital Audio Broadcasting

MBUX supports digital audio broadcasting(DAB) and HD Radio. They are all
digital radio standards. HD Radio is mainly used in North America. We choose
DAB as our test target because the DAB test environment is easier to be set
up with open source software-defined radio. There is no public information
on setting up an HD radio station. DAB standard is open to the public, but HD
Radio is proprietary.

To set up our environment, we use odr-mmbtools. It is a collection of open
source software to set up a small DAB station. The hardware we used is USRP
B210.

In Shanghai, China, DAB is not available. We had to use odr-mmbtools to
generate DAB signal samples to test. DAB function in cars that sold in Shanghai

sudo ./pi_fm_rds -freq 100.1 -pi ffff -rt ’Hello, world!’ -ps ’KeenTest’

Figure 9.1: Customs FM radio signals

72

C H A P T E R 9 : E X P L O R A T O R Y R E S E A R C H

is also disabled. So is our test bench. We used methods in section 6.2 to unlock
DAB function in our test bench.

Now we can receive the signal we generated in head unit.

Security Analysis

DAB is more powerful than RDS. We can pass on many more formatted data,
such as pictures and XML files. DAB standard defines that Java programs can
be transmitted and executed. But according to our reverse engineering, we
found Java not supported in the head unit implementation.

Since we can broadcast pictures to head unit via DAB, we analyzed the
historical security issues involving picture formats. But none of them are likely
exploitable. We then reversed the XML parsing code. XML is encoding into a
simpler flattened format before transmission. The parsing code is also simple,
and we didn’t find a memory corruption bug related to XML parsing.

We instrumented the tuner executable and tried to fuzz test, and fed random
data to odr-mmbtools to generate our test samples and broadcast them to
head unit. But we didn’t get useful results.

The head unit implemented two high-level protocols: EPG and TPEG. We tried
to fuzz these high-level protocols. We don’t have a valid EPG sample since DAB
is unavailable here. We tried to manually construct one but failed after many
days of attempts. Therefore we closed this research case.

Figure 9.2: DAB station

73

C H A P T E R 9 : E X P L O R A T O R Y R E S E A R C H

9.2 Airbag Research

After we compromised head unit, we started to think about what ECUs we can
penetrate next.

The head unit sends vehicle control CAN messages on CAN-HMI. These CAN
messages are filtered and delivered to the target ECU by EIS. But we found an
exception, the Airbag Control Module(ACM) connects with head unit on CAN-
HMI directly.

Figure 9.3 is the Airbag Control Module. It controls airbag deployment.

Figure 9.4 is an airbag we bought. The main component inside the airbag is the
gas generator.

Figure 9.3: Airbag control module

Figure 9.4: Airbag

74

C H A P T E R 9 : E X P L O R A T O R Y R E S E A R C H

The gas generator has two pins, which connect to ACM. Under conditions like
a car crash, the ACM apply voltage on these pins to deploy the airbag. Since we
now have control over head unit that connects to CAN-HMI. We started to test
if the airbag can be triggered from CAN-HMI.

We substitute the airbag with a LED bulb in our lab because the airbag is a one-
off, and the airbag explode can be dangerous. We didn’t try on an actual vehicle.
We have tried the following methods instead on our test bench.

The first method, if ACM is OTA capable, it is highly likely updated via CAN-
HMI. We may flash malicious firmware to ACM from head unit. We obtained
the firmware from the Mercedes-Benz firmware update server. But when we
update the firmware with our diagnostic tool, it told us to ignite the engine. This
may be caused by a CAN signal missing in CAN bus. In the meantime, we tried
to modify the firmware. The firmware we downloaded is encrypted. We then
dump the CODE flash from the storage flash chip. We load it into IDA Pro. There
is no symbols or strings inside the firmware. We didn’t find any hints after one
week of reversing engineering, and gave up this method.

The second method, ACM is configurable via CAN-HMI. We tried to configure
some parameters of this module, hope these parameters can affect the
behavior of ACM. However we have no expertise in this area, and have no clue
of what each parameter does. Therefore we moved on to the last method.

Figure 9.5: Gas generator pins

75

C H A P T E R 9 : E X P L O R A T O R Y R E S E A R C H

The Third method, deploy airbag according to ISO 26021-1:2008. This ISO
specification defined a method to deploy pyrotechnic devices via CAN bus in an
end-of-life vehicle. We followed the steps in this specification, but at one middle
stage, diagnostic tool reported ”conditions not meet” error. It didn’t tell us what
the conditions are, so we don’t know how to meet the ”conditions”.

For vehicle safety reason, we didn’t test these on a real car. We failed in
deploying airbag in our lab eventually.

Figure 9.6: Configurable parameters

76

C H A P T E R 1 0 : C O M P R O M I S E S C H E M E

10 Compromise Scheme

In this chapter, we will explain the attack scenarios that the attack vector that
can be used. We will also explain the unrealized attack chains due to the lack of
vulnerabilities within some attack vectors.

10.1 Verified attack chains

We get our research results based on the testbench we built and a real car
in the research process. In other words, our exploits can be used for two
scenarios, removed head units and actual cars.

10.1.1 For a Removed head unit

This attack chain is more likely to occur in the scenario that a thief wants to
unlock Anti-Theft protection in a stolen head unit.

This scenario is more likely to happen when a thief stole a head unit and plans
to power it up. Because of the anti-theft protection, he can do nothing on
the screen. Therefore, in our research, we fully simulated this kind of attack
scenario. It’s just that we got the head unit legally.

First, we can access the head unit’s intranet by removing the CSB broad and
soldering the ethernet test points with an RJ45 cable, as we explained in
section 5.1.2.

Figure 10.1: Verified attack chains on two scenarios

77

C H A P T E R 1 0 : C O M P R O M I S E S C H E M E

We can then get a reverse shell on head unit by exploiting the HiQnet protocol’s
vulnerabilities and escalate the privilege to root. We explain these in detail in
sections 5.2 and 5.4.

After that, we can unlock the Anti-theft function and vehicle functions
permanently by patching binary SysAct, which we explained in section 6.1 and
6.2.

10.1.2 For a Real Vehicle

For a real car attack scenario, we have fully confirmed this kind of attack chain.

The attacker can visit a malicious website by using the browser and exploit
the vulnerability within the browser to get the reverse shell of head unit. We
explained this in section 5.3.

The attacker then gets root privilege by exploiting the kernel vulnerability as we
did in section 5.4.

Then, the attacker can implant a permanent backdoor on head unit as the
section 6.4 describes.

Even the attacker can perform vehicle control actions, like control ambient light,
reading light, and sunshade cover, which describes in section 6.7.

10.2 Unrealized Attack Chains

In our research, we’ve tried a lot of attack surfaces. However, only parts of
them succeeded. If we just discuss the attack paths, these attack chains
can be obtained by concatenating all attack surfaces. Figure 10.2 shows the
four attack chains we tried during our research. The green arrow means we
compromised this attack surface and the red arrow means we failed in this
attack surface.

78

C H A P T E R 1 0 : C O M P R O M I S E S C H E M E

10.2.1 From Wi-Fi to Vehicle Control - 1

On T-Box, the Wi-Fi function is provided by Broadcom Wi-Fi chip. A vulnerability
in Wi-Fi firmware could result in remote code execution in the Wi-Fi chip. We
didn’t achieve this attack.

A compromised Wi-Fi chip has the opportunity to attack the host system
through the connected PCI-E bus. In our search, we confirmed that the kernel
code segment could be tampered with. Therefore, this attack surface could be
considered compromised.

The CAN-D CAN bus is connected to T-Box. We achieved sending arbitrary CAN
packets on CAN-D by fully compromised the SH2A chip on T-Box.

10.2.2 From Cellular Network Hijack to Vehicle Control - 2

There are two attack vectors on this attack surface. The first attack vector
is to compromise the balong baseband by exploiting the LTE protocol’s

Figure 10.2: Possible attack chain

79

C H A P T E R 1 0 : C O M P R O M I S E S C H E M E

vulnerabilities or CDMA2000 protocol. This is a tough way, and we didn’t
achieve it. The system of baseband and the Linux system runs on the same
processor. The attacker needs to find a way to compromise the host system.

The other attack vector is that the attacker can downgrade the cellular network
connection from 4G to 2G to hijack and exploit the vulnerabilities in the
processes parsing the content from HTTPS, MQTT, and GSM text.

In the end we didn’t find any weakness or vulnerabilities in this attack vector.

10.2.3 From Radio to Airbag Control Module - 3

On head unit, the CSB system is responsible for decoding digital radio wireless
signals. Any vulnerabilities in this procedure could result in remote code
execution in CSB system. We didn’t achieve this attack.

The CSB system communicates with MMB system through Ethernet. The
vulnerabilities in HiQnet protocol allow the attacker to gain privilege on MMB
system from CSB system. We fully achieved this attack.

After exploiting the HiQnet protocol, the privilege can be escalated to root by
exploiting the kernel vulnerability. We achieved a stable kernel exploit.

The CAN-HMI CAN bus is connected to T-Box. To send arbitrary CAN packets
on CAN-HMI, the RH850 chip on head unit should be compromised. We didn’t
achieve that.

We failed to compromised the ACM in our research.

10.2.4 From Head Unit to T-Box - 4

The T-Box connects to head unit with 5G Wi-Fi. However, few attack surfaces
exists on the network. We only found one tcp connection between head unit
and T-Box on our testbench.

The head unit and T-Box also connects via EIS and CAN bus. We try to find
vulnerabilities when T-Box processing CAN packet. But we only found a

80

C H A P T E R 1 0 : C O M P R O M I S E S C H E M E

non-exploitable vulnerability in a user-space process during processing the
message from SH2A chip.

In the end, we didn’t achieve compromising from Head unit to T-Box.

P A R T 5
EPILOGUE 5

82

C H A P T E R 1 1 : T A R G E T V E R S I O N

11 Target Version

The research mentioned in previous chapters was based on the following
hardware and software versions.

ENVIRONMENT COMPONENTS
HARDWARE

PART NUMBER
SOFTWARE VERSIONS

Test Bench

Head Unit 1779014003
apilevel/ntg6/057

NTG6_FR029.0_PDK_SWPF_20180815_Hotfix02

T-Box 1679015902
E334.2
E551.6

Benz A200L
(Made in 2019)

Head Unit 2479022604 NTG6_FR031.0_PDK_SWPF_20180726_Hotfix03

Table 11.1: Version list

83

C H A P T E R 1 2 : V U L N E R A B I L I T I E S L I S T

12 Vulnerabilities List

The following table shows the vulnerability we found and reported to Mercedes-
Benz. These bugs have been fixed before we publish this research paper.

VULNERABILITY TYPE* ECU* CVE ID PAGE

Wi-Fi SSID and passphrase transmit in
cleartext via CAN-D

Information
Disclosure

HU
T-Box

- 24

Message Length not checked in HiQnet
Protocol

Buffer
Overflow

HU CVE-2021-23906 31

Count in MultiSvGet not checked in
HiQnet Protocol

Buffer
Overflow

HU CVE-2021-23907 32

Count in GetAttributes not checked in
HiQnet Protocol

Buffer
Overflow

HU CVE-2021-23907 33

Count in MultiSvSet not checked in
HiQnet Protocol

Buffer
Overflow

HU CVE-2021-23907 34

MultiSvSetAttributes Type confusion
HiQnet Protocol

Buffer
Overflow

HU CVE-2021-23908 35

V8 Type confusion in QtWebEngine RCE HU RESERVED 40

Outdated Linux kernel LPE HU CVE-2017-6001 42

RH850 Denial of Service DoS HU - 53

Attack Host System from Wi-Fi Chip RCE T-Box - 57

Array Out-of-bound in
RemoteDiagnosisApp

Memory
Corruption

T-Box CVE-2021-23910 59

Code Execution on SH2 MCU Code Execution T-Box CVE-2021-23909 62

Firmware downgrade on SH2 MCU
Firmware

Downgrade
T-Box 64

Table 12.1: Vulnerability list

* RCE=Remote Code Execution, LPE=Local Privilege Escalation, DoS=Denial of Service
* HU=Head Unit

84

C H A P T E R 1 3 : C O N C L U S I O N

13 Conclusion

This report showed how we performed our security research on Mercedes-
Benz’s newest infotainment system, MBUX. In order to complete some attack
chains, We analyzed many attack surfaces and successfully exploited some
of the attack surfaces on head unit and T-Box. For head unit, we demonstrated
what the attacked could do in a compromised head unit system for two attack
scenarios, the removed head units and the real-world vehicles. For T-Box, we
demonstrated how to send arbitrary CAN messages on T-Box and how to
bypass the code signing mechanism to flash a custom SH2A MCU firmware
after the T-Box system is compromised. We also documented our attempts on
compromising FM Radio and Airbag which didn’t work out in the end.

85

R E F E R E N C E

Reference
[1] Tencent Security Keen Lab. New Vehicle Security Research by KeenLab: Experimental Se-

curity Assessment of BMW Cars. 2018. URL: https://keenlab.tencent.com/en/2018/05/22/

New-CarHacking-Research-by-KeenLab-Experimental-Security-Assessment-of-BMW-Cars/.

[2] Tencent Security Keen Lab. Experimental Security Assessment on Lexus Cars. 2020. URL:

https://keenlab.tencent.com/en/2020/03/30/Tencent-Keen-Security-Lab-Experimental-Se-

curity-Assessment-on-Lexus-Cars/.

[3] Tencent Security Keen Lab. New Vehicle Security Research by KeenLab: Experimental Se-

curity Assessment of BMW Cars. 2018. URL: https://keenlab.tencent.com/en/2018/05/22/

New-CarHacking-Research-by-KeenLab-Experimental-Security-Assessment-of-BMW-Cars/.

[4] Tencent Security Keen Lab. New Car Hacking Research: 2017, Remote Attack Tesla Motors

Again. 2017. URL: https://keenlab.tencent.com/en/2017/07/27/New-Car-Hacking-Research-

2017-Remote-Attack-Tesla-Motors-Again/.

[5] Tencent Security Keen Lab. Tencent Keen Security Lab: Experimental Security Research of

Tesla Autopilot. 2019. URL: https://keenlab.tencent.com/en/2019/03/29/Tencent-Keen-Secu-

rity-Lab-Experimental-Security-Research-of-Tesla-Autopilot/.

[6] MBUX. URL: https://www.mercedes-benz.co.uk/passengercars/mercedes-benz-cars/mod-

els/a-class/sedan-v177/specifications/equipment-packages/mbux.html.

[7] Guy Harpak Yuankai Chen. Mercedes-Benz and 360 Group: Defending a Luxury Fleet with the

Community. 2020. URL: https://www.rsaconference.com/industry-topics/presentation/

mercedes-benz-and-360-group-defending-a-luxury-fleet-with-the-community.

[8] Gal Beniamini. Over The Air: Exploiting Broadcom’s Wi-Fi Stack (Part 1). 2017. URL: https://

86

R E F E R E N C E

googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html.

[9] Gal Beniamini. Over The Air: Exploiting Broadcom’s Wi-Fi Stack (Part 2). 2017. URL: https://

googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html.

[10] HiQnet Third Party Programmer Documentation. URL: https://adn.harmanpro.com/site_ele-

ments/resources/515_1414083576/HiQnet_Third_Party_Programmers_Guide_v2_original.pdf.

[11] Greg KH. Linux 3.18.71. 2017. URL: https://lwn.net/Articles/733716/.

[12] Greg KH. Linux 3.18.140. 2019. URL: https://lwn.net/Articles/788688/.

[13] Peter Zijlstra. perf: Fix event->ctx locking. 2017. URL: https://git.kernel. org/pub/scm/linux/

kernel/git/stable/linux.git/commit/?h=linux-3.18.y&id=33b738f7c5a704b729b2502669cf-

71c7b25ab7d6.

[14] Peter Zijlstra. perf/core: Fix concurrent sys perf event open() vs. ’move group’ race. 2018.

URL: https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=li-

nux-3.18.y&id=2f9cf5cd5580046fe9ff97dae32f9c753500d4ea.

[15] DiShen. The Art of Exploiting Unconventional Use-after-free Bugs in Android Kernel. 2017.

URL: https://pacsec.jp/psj17/PSJ2017_DiShen_Pacsec_FINAL.pdf.

[16] RDS. URL: https://en.wikipedia.org/wiki/Radio_Data_System.

[17] PiFmRds. URL: https://github.com/ChristopheJacquet/PiFmRds.

