
Too Good to Be Safe: Tricking Lane Detection in Autonomous Driving with
Crafted Perturbations

Pengfei Jing12, Qiyi Tang2, Yuefeng Du2, Lei Xue1, Xiapu Luo1∗, Ting Wang3, Sen Nie2, Shi Wu2

1Department of Computing, The Hong Kong Polytechnic University
2Keen Security Lab, Tencent

3College of Information Sciences and Technology, Pennsylvania State University

Abstract
Autonomous driving is developing rapidly and has achieved
promising performance by adopting machine learning algo-
rithms to finish various tasks automatically. Lane detection
is one of the major tasks because its result directly affects
the steering decisions. Although recent studies have discov-
ered some vulnerabilities in autonomous vehicles, to the best
of our knowledge, none has investigated the security of lane
detection module in real vehicles. In this paper, we conduct
the first investigation on the lane detection module in a real
vehicle, and reveal that the over-sensitivity of the target mod-
ule can be exploited to launch attacks on the vehicle. More
precisely, an over-sensitive lane detection module may regard
small markings on the road surface, which are introduced by
an adversary, as a valid lane and then drive the vehicle in
the wrong direction. It is challenging to design such small
road markings that should be perceived by the lane detection
module but unnoticeable to the driver. Manual manipulation
of the road markings to launch attacks on the lane detection
module is very labor-intensive and error-prone. We propose
a novel two-stage approach to automatically determine such
road markings after tackling several technical challenges. Our
approach first decides the optimal perturbations on the camera
image and then maps them to road markings in physical world.
We conduct extensive experiments on a Tesla Model S vehi-
cle, and the experimental results show that the lane detection
module can be deceived by very unobtrusive perturbations to
create a lane, thus misleading the vehicle in auto-steer mode.

1 Introduction

Autonomous vehicles (AVs) are evolving rapidly in recent
years, which rely on multiple sensors and machine learning
algorithms to detect and reconstruct the surrounding environ-
ment for finishing various tasks automatically. Lane detection
is one of the major tasks because its result directly affects the
steering decisions.Therefore, misleading the lane detection

∗The corresponding author.

Physical	perturbations

Correct	driving	direction

Misguided	direction

Figure 1: Tricking the autonomous vehicle to steer into the reverse
traffic lane. If the physical perturbations added by an adversary are
recognized as a lane, the vehicle is likely to follow the fake lane and
swerve into the wrong direction.

module can lead to severe consequences. For example, if the
lane detection module can be trapped into recognizing the
small road markings added by an adversary as a valid lane,
the vehicle will be misled by the fake lane and even be steered
into the reverse traffic lane as shown in Fig.1.

Although a few recent studies demonstrated the feasibility
of exploiting the camera-based perception in autonomous
vehicles[37, 42, 49], they have the following limitations. First,
some studies conducted white-box analysis that requires full
knowledge of the target model[42, 49]. Unfortunately, it is
very difficult to collect such information from real vehicles.
Second, very few experiments were done on a real vehicle. To
our best knowledge, only Nassi et al. recently demonstrated
the feasibility of launching the phantom attack[37] on the
camera-based perception of Tesla. However, the phantom
attack only works in dark environments and can be easily
noticed by the driver.

In this paper, we conduct the first investigation on the se-
curity of the lane detection module used in real vehicles. In
particular, using Tesla Autopilot[13] as an example, we re-
veal that it is feasible to trick the lane detection module with
crafted physical perturbations to mislead a Tesla vehicle in
auto-steer mode and cause severe consequences, such as hit-
ting the road curbs, driving into oncoming traffic, etc. Sur-

Camera	image
(from	Autopilot)

Modified
camera	image

Lane	detection	module
(in	Autopilot) Lane	image

Heuristic	algorithms

Visibility	of
perturbation

Best	perturbation

Stage	1:	Finding	the	best	digital	perturbation

Physical
deployment

Stage	2:	Deployment	in	physical	world

Visibility	of
detected	lane

Vehicle	camera
in	Tesla

Add
perturbation

Generate	new
perturbation

Figure 2: Overview of our two-stage approach. In the first stage, we add the perturbation, which is based on physical coordinate, to the camera
image, and then feed the modified camera image to the lane detection module to generate the corresponding lane image. We formulate an
optimization problem based on the visibility of perturbation and that of detected lane and adopt heuristic algorithms to find the best perturbation,
which is unobtrusive to human but causes the lane detection module to output an obvious lane. In the second stage, we deploy the best
perturbation in physical world according to the attributes of the best perturbation.

prisingly, we reveal that the vulnerability is not due to the
incapability of its deep learning based lane detection algo-
rithm. On the contrary, its algorithm is so sensitive that some
unobtrusive stickers on the road surface will be regarded as a
valid lane, and thus the vehicle will be misled.

It is challenging to inspect the lane detection module in a
real vehicle. First, since the lane detection system is embed-
ded in the vehicle without open source, it is difficult to access
its binary and understand its computational logic. Specifically,
it is challenging to extract and comprehend the deep learn-
ing algorithms executed in GPU. Second, it is non-trivial to
determine the best perturbations for misguiding the vehicle,
which should be perceived by the lane detection module but
unnoticeable to the driver. Third, even if the perturbations
imposed to the input of the lane detection module can mislead
the vehicle, it is not easy to decide how to launch the attack
in real world by adding unobtrusive road markings on the
ground. An intuitive approach to find the best perturbation is
to place stickers on the ground and then check whether the
vehicle will be misguided manually. If not, the stickers should
be changed or relocated. Unfortunately, such an approach is
very labor-intensive and error-prone.

We propose a novel two-stage approach, as shown in Fig.2,
to automatically determine the road markings for launching
the attack on the lane detection module (in §4). More pre-
cisely, before the attack, we conduct reverse engineering on
the firmware of Tesla Autopilot to determine the input (i.e.,
camera image) of its lane detection module and the corre-
sponding output (i.e., lane image). This step is in §3. With
such information, in the first stage, we conduct black-box
attacks on the lane detection module by imposing the crafted
perturbations to the camera image and capturing the corre-
sponding lane image. We design metrics to quantify the visi-
bility of the perturbation and the visibility of the correspond-
ing detected lane, and formulate an optimization problem

to find the best perturbation that can lead to a fake lane but
is unnoticeable to human perception (in §4). We employ 5
heuristic algorithms to find the optimal solution, and find that
Particle Swarm Optimization (PSO) is the best one (in §5).

In the second stage, we place markings on the ground ac-
cording to the optimal perturbation and evaluate its effective-
ness. It is worth noting that we use physical metrics in the
parametric description of the digital perturbation (in §4.1),
and therefore the optimal perturbation can be easily mapped
to the markings in physical world. We conduct extensive ex-
periments on a Tesla Model S vehicle, and the experimental
results show that the lane detection module can be deceived
by unobtrusive perturbations to create a fake lane, thus the
vehicle in auto-steer mode can be misled.

In summary, we make the following major contributions:
• We conduct the first investigation on the security of the lane
detection module in real vehicles and reveal that its sensitivity
can be exploited by an adversary to generate fake lanes and
consequently mislead the vehicle.
• We perform reverse engineering on the firmware of Tesla
Autopilot to locate the input camera image and the output lane
image. With this information, we propose a novel two-stage
approach to generate the optimal perturbations against the
lane detection module.
• We conduct extensive experiments on a Tesla vehicle (Tesla
Model S)[15] to evaluate our approach. The experimental re-
sults show that the lane detection module in Tesla Autopilot
is vulnerable to our attack and our approach can quickly gen-
erate effective perturbations.

2 Attack Overview

In this section, we first introduce the threat model and then
give an overview of our two-stage attack approach.

2.1 Threat Model
We assume that an attacker has an autonomous vehicle, whose
lane detection module is the same as that of other vehicles
of the same model, but does not have any previous knowl-
edge about the module (i.e., black-box setting). The attacker
aims to add unobtrusive markings on the ground so that the
lane detection module recognizes them as a valid lane and
consequently the victim autonomous vehicle will be misled.

An intuitive attack approach is to place markings at the
possible area of the road and check whether the vehicle will
be misguided. If not, the attacker can change the position
and the shape of the markings and repeat the try-and-error
method until the attack succeeds. However, this approach is
very labor-intensive and error-prone because of the unlimited
number of possible ways to modify and place the markings.
Our approach to be described in §2.2 tackles these limitations.

2.2 Our Approach
This section introduces the workflow of our approach, the
challenges to be addressed, and the key ideas of our solutions.

2.2.1 Workflow

We first locate the input camera image to the lane detection
module and the corresponding output lane image by conduct-
ing static and dynamic analysis on the firmware (in §3). Then,
we carry out the two-stage attack as shown in Fig. 2.
Stage 1. Finding the best perturbation in digital world.
We formulate an optimization problem based on the visibility
of the perturbation and the visibility of the corresponding
detected lane to find the best perturbation that can lead to a
fake lane but is unnoticeable to human perception.
Stage 2. Deploying markings in physical world according
to the best perturbation. According to the best perturbation
in digital world, we deploy the markings in physical world
and then evaluate the attacks on a real vehicle.

2.2.2 Challenges

Three challenges should be tackled to realize our approach.
C1. How to locate the input camera image and the corre-
sponding output lane image in the vehicle? Our two-stage
attack approach needs to access the input camera image and
the output lane image. However, it is non-trivial to locate
them since the lane detection module is in the closed-source
firmware of Tesla Autopilot and the algorithms are executed
in GPU using undocumented proprietary instruction sets.
C2. How to add perturbations to input camera image?
An intuitive method is to add perturbations at the pixel level
without considering the physical deployment. However, it may
not be possible to implement such perturbations in physical
world because it is not easy to accurately project the pixels to
physical world, considering the distortion of the lens.

C3. How to find the best perturbations? The best pertur-
bations should be as unobtrusive as possible so that drivers
cannot notice them and meanwhile they can force the lane de-
tection module to output a fake lane. It is challenging to find
the best perturbations because the target model is in black-box
setting so that the gradient-based optimization methods[41]
cannot be applied.

2.2.3 Solutions

S1 (§3). We reverse engineer the firmware of Tesla Autopilot
through static and dynamic analysis to locate the input cam-
era image and output lane image. In particular, by exploiting
the observation that Tesla Autopilot is powered by NVIDIA
DRIVE technology [14] and its deep-learning computation
follows the CUDA programming model [4] and is finished in
GPU, we focus on locating and extracting the images in GPU
memory. More precisely, after finding the binary responsible
for lane detection, we conduct static analysis to find out when
the images are available in GPU memory, and then instru-
ment the binary and perform dynamic analysis to determine
the memory addresses of the images. After that, we employ
CUDA APIs to extract and modify the target images.
S2. We use a vector containing metrics from the physical
world to represent the perturbations in digital world, and de-
sign the formula, which is based on the pinhole camera model
and camera calibration (in Appendix B), to map the digital
perturbation to the markings in physical world (in §4.1).
S3. We design two metrics to quantify the visibility of the
perturbation and that of the corresponding detected lane, and
formulate an optimization problem for the best perturbations
(in §4.2.2). Then, we use five heuristic algorithms (in Ap-
pendix C.1) to find the best perturbation in digital world.

3 Accessing Data in Tesla Autopilot

This section details S1 for locating the input camera image
and the corresponding output lane image in the vehicle.

3.1 Overview

3.1.1 Firmware under examination

Our target vehicle is Tesla Model S 75, with the Autopilot
hardware version of 2.5 and software version of 2018.6.1. It is
worth noting that our methodology can be applied to other au-
tonomous vehicles. The vehicle is running an AArch64 Linux
operating system and uses NVIDIA GPU for deep learning
computation. In the file system of Tesla Autopilot, there is a
binary named vision. Through reverse engineering, we find
that this binary is responsible for vision-related tasks includ-
ing lane detection. It transmits the data of camera images into
the GPU memory and finishes the vision-related computing

tasks, in which lane detection is involved. The lane recog-
nized by this binary will affect the steering decision when
Autopilot is in auto-steer mode (demonstrated in §5). Since
this vision binary can directly interact with the camera im-
age and lane image in GPU memory, we carry out static and
dynamic analysis on it to locate and access the target images.

3.1.2 CUDA

Tesla Autopilot uses NVIDIA GPU to execute its deep-
learning algorithms, whose implementation follows the
CUDA programming model [4]. We first introduce some
necessary knowledge about CUDA programming because it
is exploited by us to locate the target images.

CUDA programs usually involve two kinds of hardware:
host (CPU) and device (GPU). If CPU needs to access data
in GPU memory, it invokes a special kind of function named
kernels. A kernel is a function executed in the GPU as an
array of threads in parallel [4]. These kernels will be launched
and executed on GPU and manipulate data in GPU memory.
In other words, kernels are the functions that run on GPU
and launched by CPU. Since the lane detection is finished in
GPU and the target images (camera image and lane image)
are related to lane detection, the target images will be stored
in GPU memory at certain time, and thus all we need to do is
to determine "when" and "where".

CUDA provides memory management functions [3] to ac-
cess and manipulate data in GPU memory.
• cudaMalloc* [6]: Functions whose names begin with cu-
daMalloc are used to allocate memory in GPU (except cu-
daMallocHost that allocates memory on CPU). We denote
such functions as cudaMalloc*, each of which has two types
of parameters. One is the pointer to the allocated memory and
the other represents the data’s size information. cudaMalloc*
will act as the instrumentation location for locating the lane
image in GPU memory (in §3.3 and §3.4).
• cudaMemcpy* [7]: Functions whose names begin with cu-
daMemcpy are used to copy data from one address to another.
We denote these functions as cudaMemcpy*, which take in
four types of parameters including source address, destina-
tion address, size information, and the mode that represents
the direction of the copying operation: host to GPU, GPU to
host, host to host or GPU to GPU. cudaMemcpy* will act as
the instrumentation location for locating the camera image
in GPU memory (in §3.3 and §3.4). We also employ these
functions to dump the target images from GPU memory after
we get their address and size information.
• cudaConfigurecall [5]: This function will be called before
each kernel is invoked by the host to configure the launch
on GPU. Hence, we can locate the kernels by locating the
positions of cudaConfigurecalls in the binary for analysis.
cudaConfigurecall will act as the instrumentation location for
dumping lane image (in §3.3 and §3.4).

Starting	address	in	GPU	memory

Data	size

GPU	Memory

Dump	from	GPU	memroy
at	the	instrumentation	location

Visualize
Camera	image

Lane	image

Figure 3: The process of dumping and visualize the target data

3.1.3 Factors required for dumping target images

We leverage the documented CUDA APIs to determine
"where" and "when" to get the target images. In particular,
we need to know the following three factors.
1. Instrumentation location. Since the lane detection is fin-
ished in GPU, the input camera images and the output lane
images should be available in GPU memory after some spe-
cific functions are executed. We add instrumentation right
after the invocation of such functions to get the target images.
2. Starting address of the images in GPU memory. It refers
to the memory address where the image is stored in GPU
memory. We need such addresses to locate the target images.
3. Data size. We need the size information to dump the im-
ages because they are stored in GPU memory as raw bytes.
Moreover, to visualize the raw data (i.e., show the images),
we need to know the image resolution (i.e., rows and columns)
and the bit depth in each pixel. Fig. 3 shows how we dump
and visualize the images from GPU memory. With the known
starting address and data size, we instrument the binary to
dump the image from the GPU memory in dynamic execu-
tion. The raw data in GPU memory are saved into a file and
visualized according to the learnt resolution and bit depth.

We perform the following steps to determine these factors.
(1) Estimating data size (§3.2). We estimate the data size of
camera images from the relevant document of the hardware
camera [14]. For lane image, we conclude the data size from
a file in Tesla Autopilot.
(2) Conducting static analysis to collect instrumentation
location candidates (§3.3). We aim to dump the camera im-
age right after cudaMemcpy* is used to copy the image into
GPU memory. Similarly, we dump the lane image right after
the kernel for lane detection finishes its task. We conduct
static analysis on the vision binary to find a list of candidates,
including the invocations of cudaMemcpy* (i.e., candidates
for dumping the camera images) and the kernels (i.e., candi-
dates for dumping the lane images).
(3) Performing dynamic analysis to determine instrumen-
tation location and starting address in GPU memory
(§3.4). Since the specific GPU memory address and the con-

text can only be revealed during execution, we perform dy-
namic analysis to determine the correct instrumentation loca-
tion and starting address. Specifically, for input camera image,
we hook all cudaMemcpy* calls and locate the one respon-
sible for copying camera image by checking its parameters.
Similarly, we first hook all cudaMalloc* to find the starting
address of the output lane image, and then determine the ker-
nel by checking the visualized lane image after all possible
kernels based on the data size and starting address.

3.2 Estimating Data Size

Size of camera image. We find the camera image‘s resolu-
tion (i.e., 1280×960 pixels) according to its hardware [14],
however, the bit depth is still missing. Therefore, we compute
32 possible data sizes according to the possible bit depth,
namely from 1-bit to 32-bit, to cover most of the possible bit
depth used in digital images. For example, if an image is in
16-bit bit depth, the data size is 1280×960×16=19,660,800
bits (or 2,457,600 bytes). After this estimation, we get a list of
the possible data size for camera image. The specific bit depth
will be determined in dynamic analysis in §3.4 by hooking
the cudaMemcpy* calls.
Size of lane image. We find a file in the file system of Tesla
Autopilot, which provides information about the architecture
of the deep neural network used for object detection tasks
(including lane detection), such as data size and pixel depth
of the data matrix in each layer. This network has several
outputs and the lane detection result is one of them, which
is a 640× 416 matrix with 32 bits float values. With this
information, we can estimate the data size of the lane image
output, which should be 640×416×32 = 8,519,680 bits (or
1,064,960 bytes). The size of the lane image will be the key
information for hooking the cudaMalloc* in order to find the
starting address of the lane image (in §3.3 and §3.4).

3.3 Conducting Static Analysis

Using IDA-Pro [9], we conduct static analysis on vision bi-
nary to determine the instrumentation locations and add in-
strumentation code. We detail the instrumentation locations
for collecting camera images and lane images, respectively.
1.Instrumentation locations for collecting camera images.
Since lane detection is finished in GPU, cudaMemcpy will
be used to copy the input camera image into GPU memory
before processing. Hence, we add instrumentation right after
the invocation of cudaMemcpy for copying data into GPU
memory. The instrumentation code will collect the parameters
passed to the cudaMemcpy, including (1) source address, (2)
destination address, (3) data size, and (4) mode of transfer,
when being executed in dynamic analysis.
2. Instrumentation locations for collecting lane images.
We are interested in two kinds of instrumentation locations:

•Hooking cudaMalloc* to determine the starting address.
Since cudaMalloc* is responsible for allocating memory in
GPU, the memory of the lane image will be allocated by cud-
aMalloc*. In this case, we add instrumentation right after the
invocation of each cudaMalloc*, and collect the (1) memory
address and (2) data size passed to cudaMalloc*. By locating
the cudaMalloc* whose data size is equal to the estimated
lane image size, we can determine the cudaMalloc* that allo-
cates the memory of the lane image, thus knowing the starting
address of the lane image in GPU memory.
• Hooking kernels to determine instrumentation location
for dumping lane images. Since kernel functions are re-
sponsible for the computation in GPU, we first enumerate
all kernels according to the invocation of cudaConfigureCall.
There are totally 75 calls of cudaConfigureCall by 22 dif-
ferent callers. Then, we add instrumentation right after the
invocation of each kernel, because one of them will be re-
sponsible for lane detection and we can collect the lane image
right after it finishes. The instrumentation code will dump the
lane image in GPU memory according to the given starting
address (found by hooking cudaMalloc*) and data size.By
checking whether the visualized image is the desired lane
image, we identify the kernel function for lane detection.

3.4 Performing Dynamic Analysis

We execute the instrumented vision binary to (1) get the pa-
rameters passed to the hooked cudaMemcpy* for obtaining
the starting address and data size of the camera image and
determining the correct instrumentation location; (2) get the
parameters passed to the hooked cudaMalloc* for obtaining
the starting address of the lane image, and (3) dump the lane
image after each kernel candidate to determine the instrumen-
tation location of the lane image. The processes for camera
images and lane images are described as follows.
1. Camera image. Through dynamic analysis, we collect the
following information relevant to the input camera image:
(1) data size, (2) the call of cudaMemcpy* which copies the
camera image to GPU memory, (3) the starting address of
camera image in GPU memory. As specified in static analysis,
we add instrumentation after each cudaMemcpy* and collect
the parameters passed to cudaMemcpy* in dynamic execution.
From the experiment results, among the 32 different estimated
sizes, only a data size of 2,457,600 bytes is found, meaning the
bit depth of the input image is 16-bit. In the experiment, we
find that there are 3 types of camera images, which match the
three front cameras on the vehicle. However, we do not know
which one is used in lane detection. To identify the camera
image involved in lane detection, we design a correlation
analysis method, which is detailed in Appendix.A.
2. Lane image. For lane image, we have determined the data
size in §3.2, and list the 75 candidate kernels. Through dy-
namic analysis, we obtain the following information: (1) the
starting address of the lane image, and (2) the kernel that is

responsible for lane detection among the candidates. We first
finish task (1) by hooking the cudaMalloc*, and accomplish
task (2) based on the found GPU address in task (1). Next, we
describe how we determine the starting address (task (1)) and
how we determine the instrumentation location (task (2)) of
the lane image, respectively.
•Determining starting address of the lane image. As spec-
ified in static analysis, we select a list of instrumentation lo-
cations for cudaMalloc* to find the starting address of the
lane image. Using IDA-Pro, we find 77 calls of cudaMal-
loc*. We add instrumentation to check the parameters passed
to cudaMalloc* every time it is called, and aim to find the
cudaMalloc* call whose data size is our estimated size. After
dynamic execution, we find the specific call of cudaMalloc*
whose size is our estimated size (1,064,960 bytes), and locate
the address of the lane images by this specific cudaMalloc*.
•Determining instrumentation location of the lane image.
As mentioned in static analysis, for lane image, we find 75
possible places in vision binary for instrumentation. Based on
the found GPU memory address of the lane image, we add
instrumentation to dump the images after all these kernel can-
didates. By visualizing the dumped data, we learn that the ker-
nel in the function named t_cuda_lane_detection::compute is
responsible for lane detection.
Remark. We summarize the factors for camera image and
lane image. For camera image, the instrumentation location
is right after the invocation of cudaMemcpy*; the starting
address is the destination address passed as a parameter to the
specific cudaMemcpy*; the data size is 2,457,600 bytes, with
1280×960 resolution and 16-bit bit depth. For lane image, the
instrumentation location is right after the execution of func-
tion t_cuda_lane_detection::compute; the starting address is
the address passed to the specific cudaMalloc* which allo-
cates the memory for the lane image; the data size is 1,064,960
bytes, with 640×416 resolution and 32-bit bit depth.

4 Two-Stage Attack

This section describes how we add digital perturbations based
on the physical metrics and how to find the best perturbations,
which are the solutions to C2 and C3, respectively.

4.1 Adding Digital Perturbations
This subsection describes the solution to C2. The goal is to
obtain the digital perturbation which is defined by physical-
world attributes for easy physical deployment.

4.1.1 Projecting Physical World Markings

As shown in Fig.4, we use (X ,Y,Z) to denote the coordinate
of each pixel on the markings in real world, which is the
coordinate relative to the vehicle camera, and utilize (u,v)
to denote the coordinate of the corresponding pixel on the

Physical
perturbations Physical	world

coordinate
Mapping
relation

Image
coordinate

Vehicle	camera

Modified
camera	image

Figure 4: Mapping the coordinate of (X ,Y,Z) on markings in physi-
cal world to the coordinate of (u,v) on perturbations in digital world.

perturbation added to the image. With the pinhole camera
model, we project (X ,Y,Z) to (u,v). We also undistort the
image to eliminate errors due to lens distortion through cam-
era calibration, thus making the projection more accurate.
Appendix B details how we find the mapping relationship
between these two coordinates. With this mapping relation-
ship, we can map any physical world coordinate (X ,Y,Z) to
image coordinate (u,v). Hence, given a set of coordinates
describing the position of the perturbations in physical world,
we can project them to digital world and find their correspond-
ing pixels in the camera image. Moreover, by modifying the
grayscale value of the corresponding pixels, we can add the
digital perturbations according to the physical perturbations.
The reason is that in physical world the colors of the lane lines
are mostly white and yellow, and they are brighter than the
ground. Consequently, the lane line pixels in digital images
are also brighter than the surrounding pixels on the ground.
Therefore, raising the grayscale value (representing bright-
ness) of the selected pixels in the captured digital image can
result in the perturbations.

4.1.2 Parameterized Perturbations

For the ease of deployment, we use 8 parameters, which are
listed in Table 1 and shown in Fig.5, to characterize the dig-
ital perturbations. len and wid determine the shape of the
perturbations. D1, D2, and D3 determine the position of the
perturbations. ∆G is the increment of grayscale value of the
pixels on the perturbation. n represents the number of pertur-
bations (for example, n = 2 in Fig.5). Higher value of ∆G and
more number of perturbations n make the added perturbation
more obvious. θ is the rotation angle of the perturbations. The
8 parameters comprise a vector x:

x = (len,wid,D1,D2,D3,∆G,θ,n) ∈ X (1)

The measurement of len, wid, D1, D2, D3 and θ is based on
physical metrics. The unit of len, wid, D1, D2, D3 is centime-
ter, and that of θ is degrees. ∆G is an 8-bit number ranging
from 0 to 255 (we convert the 16-bit camera image into 8-
bit for the ease of computing and visualization). Note that
when n = 1, D3 is invalid and has no influence on the added
perturbation, because there is only one perturbation in view.

The range of x is denoted as X . len, wid, D1, D3, ∆G and n
should be positive values. D2 and θ can be positive or negative.
Positive values of D2 mean that the perturbation is on the left
side of the vehicle, and negative means the right side. Positive
value of θ represents that the perturbation is rotated towards
the right direction of the vehicle, and negative means left.

Parameters Explanation

len Length of a single perturbation
wid Width of a single perturbation

D1
Longitudinal distance from the vehicle camera

to the edge of the first perturbation

D2
Lateral distance from the vehicle

camera to the edge of the first perturbation
D3 Distance between adjacent perturbations

∆G
Increment of grayscale value

of the perturbed pixels
θ Rotation angle of the perturbation
n Number of the perturbations

Table 1: Parameters determining the added perturbations

�1

�2

��� ���

�

�
3

Figure 5: Illustration of the parameters of perturbations.

4.2 Finding the Best Perturbations
We design two metrics to quantify the quality of the per-
turbations in digital world, based on which we construct an
optimization problem for finding the best perturbations.

4.2.1 Quality of Perturbations

Since a good perturbation should be unnoticeable to the driver
but cause the lane detection module to generate a fake lane,
we quantify its quality from the following two aspects:
Visibility of lane. The perturbations should lead to a strong
and stable fake lane in the output lane image.
Visibility of perturbation. The perturbations should be as
unobtrusive as possible.

We define two metrics: Vlane(x) = ∑p∈laneo(x) Gp and
Vperturb(x) = ∑p∈perturbi(x) ∆G,∆G ∈ x to quantify the visi-
bility of lane and that of perturbation, respectively. We also
define S(x) = Vlane(x)

Vperturb(x)
to be the overall score of perturbations.

The explanations of the equations are listed in Table 2.

Vlane(x) denotes the visibility of the fake lane in the output
lane image. It is computed by summing up the grayscale val-
ues of each lane line pixel (each Gp represents the confidence
of the current pixel). The higher value of Vlane(x) represents
higher visibility of the fake lane.

Vperturb(x) is the visibility of the perturbation added to the
input camera image. This score combines the number of added
pixels and the increment of grayscale values of these pixels
to represent visibility. The lower value of Vperturb(x) means
that the perturbations are more unobtrusive to human.

S(x) is the overall score of the crafted perturbation. A high
value of S(x) means that the perturbation leads to a strong
fake lane while being unobtrusive at the same time. If the
perturbations fail to create a fake lane, S(x) should be zero.

Parameters Explanation

p One single pixel in the image
laneo(x) Lane pixels in the output image

perturbi(x) Pixels on the added perturbations
Gp Grayscale value of pixel p

Vlane(x) Visibility of the fake lane created by x
Vperturb(x) Visibility of the perturbations added by x

S(x) Overall score of the parameter x

Table 2: Equation parameters explanations

4.2.2 Optimization problem

To achieve the best attack performance, we look for x∗ that
results in the highest overall score S(x).

x∗ = max
x∈X

S(x), (2)

where x is a 8-dimension vector in range X , and the output
score S(x) is a real number. We use five heuristic algorithms to
find x∗, namely beetle antennae search (BAS), particle swarm
optimization (PSO), beetle swarm optimization (BSO), artifi-
cial bee colony (ABC) and simulated annealing (SA). To solve
the optimization problem, these algorithms first initialize one
or more random input vector(s), and iteratively improve the
input vector(s) based on the output score.

These algorithms could be differentiated according to two
aspects. First, is the algorithm greedy or not? "Greedy" means
that the algorithm always updates the searching position to the
direction where the target value is likely to be higher. BAS,
PSO, and BSO are "Greedy", because they always encourage
the searching position to move to coordinates where the value
is higher, based on the hints found by the algorithms. ABC
and SA are not "Greedy", because they essentially randomly
update the position, and accept better solutions with higher
possibilities. Second, do the searching individuals of an algo-
rithm adopt a cooperative way to share information or not?
"Cooperative" means that the searching individuals will share
information with others, and update positions based on the
group information. PSO, BSO, and ABC are "Cooperative",

because each individual in the group shares his own infor-
mation to help other individuals. By contrast, in BAS and
SA, each individual works independently. The details of these
algorithms are introduced in appendix C.1.

Note that n and θ are not put into the algorithms due
to two reasons. First, since perturbation number n is a dis-
crete variable while other parameters are all continuous vari-
ables, the optimization problem will become a mixed discrete-
continuous optimization problem if n is considered and it is
hard to find the optimal result. We will investigate it in future
works. Second, since rotation angle θ is determined by the
intention of the attack, a value of θ found by the algorithms
may not meet the demand of the attacker. Therefore, we fix n
and θ to constants, and discuss their impact in §5.

5 Evaluation

We evaluate our attack on the lane detection module by an-
swering six research questions (RQs).
RQ1: How efficient are the heuristic algorithms to find
the best perturbation?
Motivation: We want to identify the most efficient heuristic
algorithm for finding the best perturbations.
Approach: We carry out the experiment with five heuristic
algorithms, namely BAS, PSO, BSO, ABC, and SA, where
PSO, BSO and ABC require multiple inputs working together,
because these inputs will share information with each other,
whereas BAS and SA work with a single input. For fair com-
parison, we also let BAS and SA have multiple inputs.

When looking for the best x, we record both the highest
score S(x) of the perturbations in history (top-1 score) and
the average score of the top 10 perturbations (top-10 averaged
score) to rule out contingency (i.e., an algorithm accidentally
finds the best solution). If one algorithm achieves high score
in both top-1 score and top-10 averaged score, its efficiency
is no coincidence and is reproducible.

Since the effect of parameter n and θ is evaluated in RQ2, in
RQ1 we let n = 1 and θ = 0. Moreover, we focus to generate
perturbation only on the left-hand side in RQ1 and discuss
the right-hand side in RQ2. We implement the five algorithms
with Python, and evaluate their performance with different pa-
rameters. The parameter setting of these algorithms is shown
in appendix C.2.
Results: Fig.6(a)-(f) show the experimental results. The X-
axis is the number of search rounds, and the Y-axis is the best
S(x) (left figure) or the top-10 averaged S(x) (right figure) of
the current search round. For an efficient algorithm, it should
(1) converge quickly, and (2) achieve high score in both top-
1 S(x) and top-10 averaged S(x). Fig.6(a)-(e) represent the
performance of BAS, PSO, BSO, ABC and SA, respectively,
and Fig.6(f) compares the best results of the five algorithms.
As shown in Fig.6(f), the five algorithms have different per-
formance. The experimental results show that "Greedy" and
"Cooperative" algorithms (e.g. PSO, BSO) converge faster

and find higher score in both top-1 S(x) and top-10 S(x), than
other algorithms. Moreover, according to Fig.6.(f), PSO finds
the highest S(x) (both top-1 and top-10) among all five al-
gorithms. Only ABC converges faster than PSO, however,
the top-1 and top-10 averaged S(x) found by ABC are much
lower than that of PSO.

Fig.7 shows one of the best perturbations. Given the origi-
nal input camera image, the lane detection module does not
output a lane. After an unobtrusive perturbation (pointed out
by the arrow in the image) is added, a clear lane is detected
and shown in the output lane image, although the perturba-
tion is nearly invisible to human perception and is unlikely
to be treated as a valid lane. The parameters of this perturba-
tion is: wid = 1cm, len = 92cm, D1 = 1365cm, D2 = 233cm,
∆G = 12 (n, θ and D3 have no influence in the setting here).
Answer: All heuristic algorithms can find best perturbations.
PSO is the most efficient one and thus we use it in other
experiments.
RQ2: How do the perturbation number n and the rota-
tion angle θ affect the best perturbation?
Motivation: As mentioned in §4.2.2, we do not put pertur-
bation number n and rotation angle θ into the heuristic algo-
rithms. In this RQ, we study how n and θ influence S(x).
Approach: We adopt the same image used in RQ1 as input
to generate the perturbations. The perturbation number is set
from 1 to 5, and the absolute value of θ is 0 to 30 degrees with
the interval of 5 degrees. In this case, we have 5 settings of n
(from 1 to 5), and 14 settings of θ (from 0 to 30 degrees on
both sides of the image). We consider all the possible settings
for n and θ, thus getting totally 5×14 = 70 different settings
of n and θ. Then, we search for the best perturbations on each
setting, and record their S(x)s.
Results: Fig.8 shows the scores of the best perturbations
found in different number n and rotation angle θ. The X-
axis represents θ and Y-axis represents n. The intersection
of two coordinates represents the best score S(x) under the
corresponding settings. The first row of the figure represents
the average S(x) under the specific θ, and the last column
represents the average S(x) under the specific n. The average
S(x) under each setting represents the overall effectiveness
for this setting. For example, the third element on the first
row represents the average S(x) when θ = 10◦ and n is from
1 to 5, and this S(x) represents the overall effectiveness of the
perturbations when θ = 10◦.

By observing the average S(x) in each θ (first row of Fig.8),
we find that the average S(x) decreases with θ, for both left
and right lane. Specifically, when θ = 25◦ and 30◦, the av-
erage S(x) is obviously lower than that in other settings of
θ. Similarly, by observing the average S(x) in each n (last
column of Fig.8), for left lane, we find that the perturbations
with n≤ 3 have the higher average S(x) than n = 4 and n = 5,
while for right lane, the average S(x) is similar among all
settings of n.
Answer: Perturbation number n does not have significant ef-

0 10 20 30
Searching round

0

100

200

300

400

Sc
or

e

BAS - Best Score

m=0.1
m=0.2
m=0.3

0 10 20 30
Searching round

0

100

200

300

400

Sc
or

e

BAS - Average Score in Top 10

m=0.1
m=0.2
m=0.3

(a) Performance of BAS

0 10 20 30
Searching round

0

100

200

300

400

500

600

Sc
or

e

PSO - Best Score

ratio=0.5
ratio=2
random

0 10 20 30
Searching round

0

100

200

300

400

500

600

Sc
or

e

PSO - Average Score in Top 10

ratio=0.5
ratio=2
random

(b) Performance of PSO

0 10 20 30
Searching round

0

100

200

300

400

500

600

Sc
or

e

BSO - Best Score

v1:v2=1:1
v1:v2=1:2
v1:v2=2:1

0 10 20 30
Searching round

0

100

200

300

400

500

600

Sc
or

e

BSO - Average Score in Top 10

v1:v2=1:1
v1:v2=1:2
v1:v2=2:1

(c) Performance of BSO

0 10 20 30
Searching round

0

100

200

300

400

500

Sc
or

e

ABC - Best Score

Setting A
Setting B

0 10 20 30
Searching round

0

100

200

300

400

500

Sc
or

e
ABC - Average Score in Top 10

Setting A
Setting B

(d) Performance of ABC

0 10 20 30
Searching round

0

100

200

300

400

Sc
or

e

SA - Best Score

T=50
T=30
T=10

0 10 20 30
Searching round

0

100

200

300

400

Sc
or

e

SA - Average Score in Top 10

T=50
T=30
T=10

(e) Performance of SA

0 10 20 30
Searching round

0

100

200

300

400

500

600

Sc
or

e

Different Algorithms - Best Score

BAS
PSO
BSO
ABC
SA

0 10 20 30
Searching round

0

100

200

300

400

500

600

Sc
or

e

Different Algorithms - Top 10 Average

BAS
PSO
BSO
ABC
SA

(f) Comparison between different algorithms

Figure 6: Results of the different algorithms. Overall, PSO has the best performance, and is the most suitable heuristic algorithm in our research.

Original	camera	image Normal	output	(no	lane)

Fake	lane	detectedModified	camera	image

Figure 7: Effect of a best perturbation. The added perturbation is
only 1cm wide in physical world, but it causes the lane detection
module to generate a fake lane.

0° 5° 10
°

15
°

20
°

25
°

30
°

Ave
rag

e

Rotation Angle

Average

5

4

3

2

1

Pe
rtu

rb
at

io
n

N
um

be
r n

466.2 539.0 496.7 468.6 468.7 341.0 267.6 0.0

503.3 494.8 386.5 407.5 361.9 407.0 218.3 397.0

326.1 520.0 553.3 348.3 448.8 229.4 202.2 375.4

474.1 546.6 445.4 525.1 473.8 433.4 299.6 456.9

541.9 504.6 528.7 554.1 606.4 425.7 398.9 508.6

485.6 629.0 569.7 508.1 452.5 209.5 219.4 439.1

Best scores (left lane)

0

100

200

300

400

500

600

(a) Left lane

0° -5° -10
°

-15
°

-20
°

-25
°

-30
°

Ave
rag

e

Rotation Angle

Average

5

4

3

2

1

Pe
rtu

rb
at

io
n

N
um

be
r n

293.1 308.3 303.3 289.2 246.2 219.3 176.5 0.0

352.5 258.8 232.5 225.6 232.3 128.8 128.7 222.7

238.8 374.7 282.0 298.7 225.9 253.0 198.6 267.4

284.2 298.2 305.5 328.3 299.9 268.9 175.4 280.1

269.6 285.8 322.2 321.9 263.5 243.1 195.0 271.6

320.7 324.3 374.5 271.4 209.4 202.5 184.7 269.6

Best scores (right lane)

0

50

100

150

200

250

300

350

(b) Right lane

Figure 8: Best scores (S(x)) in different setting of n and θ in RQ2.
The perturbations works well in different perturbation number n, and
the score reduces with perturbation angle θ increasing.

fect on S(x). Rotation angle θ reduces S(x) when it increases.
RQ3: How is the performance of our approach given dif-
ferent input camera images?
Motivation: The experiments for answering RQ1 and RQ2
are based on the same input image shown in Fig.7. To answer
RQ3, we generate perturbations on different input images to
evaluate the effectiveness of our approach.
Approach: Besides the input image shown in Fig.7, we use
four other images taken by the vehicle camera in different
environments to carry out the experiment. They are shown in
Fig.9 and their environmental features are listed in Table 3.

NUM.1 is the input image used in RQ1 and RQ2. NUM.2
and NUM.3 are in the same outdoor environment but under
different light conditions. NUM.4 is taken in an underground
garage, where the ground is clean and the light is dim. NUM.5
is a corner where the ground is dirty. The corresponding
output lane images of these original input images do not have
a lane on the expected side before we add any perturbation to
them. Similar to the settings in RQ1, we let n = 1 and θ = 0
and use S(x) to evaluate the effectiveness of our attack.

Num Environmental Features

1 Clean and bright ground, without other disturbing objects in view
2 Clean and bright ground, with disturbing objects in view
3 Clean and dark ground, with disturbing objects in view
4 Clean and dark ground, without other disturbing objects in view
5 Dirty and bright ground, with disturbing objects in view

Table 3: Environmental features of different input images

Results: The input images with the best perturbations and
the corresponding lane images are shown in the upper row
and the lower row of Fig.9.(a), respectively. The S(x) of these
examples are shown in Fig.9.(b). NUM.1 and NUM.4 lead
to higher score than the others, because the grounds in both
images are clean and a small perturbation can easily result in
a fake lane in the output lane image. Although the scores of
NUM.2/3/5 are relatively low, the perturbations are unnotice-
able to human eyes and the fake lane is valid and strong.
Answer: Given different input images, our approach can suc-
cessfully generate high-score perturbations that can mislead
the lane detection module without being noticed by the driver.
RQ4: What are the common characteristics of the best
perturbations?
Motivation: We want to summarize the common characteris-
tics of the best perturbations obtained in different scenarios
and discuss their implication.
Method: We analyze the parameters x of the best perturba-
tions obtained in the five different scenarios for answering
RQ3 and summarize the common characteristics. x is a 8-

NUM.1 NUM.2 NUM.3 NUM.4 NUM.5
(a) Perturbations in different input images and the corresponding outputs

NUM.1 NUM.2 NUM.3 NUM.4 NUM.5
Image Number

0

100

200

300

400

500

600

700

Sc
or

e

579.11

177.13

315.33

562.81

107.64

(b) Scores of the perturbations

Figure 9: RQ3 : The output lane and corresponding scores based on different input images. In all five different settings, we manage to find the
unobtrusive perturbations which fool the lane detection module.

Num
x

wid len D1 D2 ∆G

NUM.1 1cm 117cm 15.30m 2.23m 12
NUM.2 5cm 59cm 13.37m 2.27m 28
NUM.3 3cm 72cm 12.53m 1.51m 12
NUM.4 1cm 133cm 11.68m 1.79m 7
NUM.5 1cm 83cm 10.14m 2.38m 25
Average 2cm 93cm 12.60m 2.04m 17

Table 4: Parameter values of the best perturbations generated for five
different input camera images.

dimension vector but we focus on five dimensions in x, in-
cluding wid and len that denote the shape of the perturbation,
D1 and D2 that indicate the relative position, and ∆G repre-
sents the increment of grayscale value of the perturbations.
We do not study n and θ because they are fixed in the experi-
ments. Moreover, D3 is meaningless when n = 1.
Results: Table 4 lists the values of these five dimensions of
the best perturbations to different images. We summarize the
characteristics from the following three aspects.
• Shape In all scenarios, wid is much smaller than len, mean-
ing that the ‘narrow but long’ perturbations are more effective
than the ‘wide but short’ perturbations.
• Position For the position of the perturbation, D1 ranges
from 10.14m to 15.30m, and D2 ranges from 1.51m to 2.23m.
• Increment of grayscale value: The value of ∆G varies in
different input images. For clean ground (NUM.1 and NUM.4)
or dark grounds (NUM.3 and NUM.4), a small increment can
make the lane in the output image very obvious, whereas
‘dirty’ grounds (NUM.2 and NUM.5) require larger value of
∆G to generate a fake lane.
Answer: ‘Narrow but long’ perturbations are more likely to
create a fake lane. The required increment of grayscale value
(∆G) depends on the brightness and cleanliness of the ground.
RQ5: How effective is the attack in physical world?
Motivation: As RQ1-4 study the attacks in digital world, for
RQ5, we evaluate the attacks in physical world by deploying
markings on road surface according to the best perturbations.
Approach: We first let the vehicle generate the input camera

Figure 10: The road with the crafted markings from the driver’s view.
The sticker on the left side of the road is very unobtrusive and can
hardly be noticed by human.

image in an area for conducting this experiment, and then
user our approach to find the best perturbations. After that,
according to the information of the best perturbation, we de-
ploy the markings (i.e., stickers) on road surface and evaluate
the visibility of the fake lane in the lane image. We adopt the
following settings for this experiment.
• Perturbation number n. Since the answer to RQ2 shows
that n has little effect on S(x) of the perturbations, we choose
n = 1 and n = 2 for the ease of deployment.
• Rotation angle θ. Since the answer to RQ2 shows that θ

will reduce the value of S(x), to evaluate whether the visibility
of the lane will also be affected in physical world, we set
different values to θ (0, 15◦ and 30◦) in the experiment.
• Light condition. We conduct the experiment in both light
and dark environments to evaluate the effect.
• Longitudinal Distance D1. After deploying the stickers,
we drive the vehicle from far to close to them, and record the
visibility of the lane image (Vlane(x)) to evaluate the effec-
tiveness of the attack with different D1. Specifically, we drive
from D1 = 15m to D1 = 3m, and record 60 frames of the lane
images during the process.
• ∆G. It is difficult to implement ∆G precisely in physical
world because it will be affected by some uncontrollable fac-

15m 13m 11m 9m 7m 5m 3m
D1

0

50

100

150

200

250

300

350

La
ne

 V
is

ib
ili

ty

Perturbation Number n=1: Different Angles

=0°
=15°
=30°

15m 13m 11m 9m 7m 5m 3m
D1

0

50

100

150

200

250

300

350

La
ne

 V
is

ib
ili

ty

Perturbation Number n=2: Different Angles

=0°
=15°
=30°

(a) Lane visibility of each frame in different n and θ

15m 13m 11m 9m 7m 5m 3m
D1

0

50

100

150

200

250

300

350

La
ne

 V
is

ib
ili

ty

Perturbation Number n=1: Different Light Condition

Bright
Dark

15m 13m 11m 9m 7m 5m 3m
D1

0

50

100

150

200

250

300

350

La
ne

 V
is

ib
ili

ty

Perturbation Number n=2: Different Light Condition

Bright
Dark

(b) Lane visibility of each frame in different n and light conditions

Figure 11: The visibility of lane changes with D1. Straight perturbations (θ = 0) have higher lane visibility. Perturbation number n and light
condition have little effect on the lane visibility. Interested readers are referred to our demo video[8].

tors, such as the environment’s light condition of and the
texture of the physical perturbations. In this experiment, we
use white stickers, which offers high value of ∆G, to construct
the perturbations in physical world.

We use the algorithm (PSO) to find the best digital per-
turbation for the scenarios of n = 1 and n = 2, respectively.
When n = 1, its length len is 1.5m, and its width wid is 1cm.
when n = 2, the length of each perturbation is 0.4m, the width
is 1cm, and the adjacent distance is (D3) 0.7m.

Fig.10 shows the driver’s view of the road with the crafted
markings (single perturbation). The stickers are placed on the
left side of the vehicle, and can hardly be noticed by human.
Results: The lane visibility in this experiment is represented
in Fig.11. The X-axis is the longitudinal distance (D1) of each
frame, and the Y-axis is the lane visibility Vlane(x). Larger
value of Vlane(x) means that the attack is more effective. We
also have the following observations.
• Perturbation number n. Compared with the setting of
n = 2, the lane visibility is higher in the setting of n = 1
when D1 ≥ 9m. Therefore, the fake lane can be detected with
different perturbation numbers. Even a single perturbation
can work in physical world.
• Rotation angle θ. Fig.11(a) shows the influence of θ, when
n = 1 and n = 2, respectively. In both scenarios, the lane
visibility with θ = 15◦ and θ = 30◦ is obviously lower than
the lane visibility with θ= 0. Therefore, straight perturbations
(θ = 0) are more likely to be detected.
• Light condition. Fig.11(b) shows the influence of light
condition, when n = 1 and n = 2, respectively. When n = 1,
the lane visibility under bright and dark condition is similar
in all values of D1. When n = 2, the lane visibility under dark
condition is higher than that in the bright condition, when
D1 ≥ 7m. Hence, the perturbations work in both bright and
dark environments. Darker environments even makes the lane
visibility higher (see n = 2 in Fig.11.(b)).
• Longitudinal Distance D1. When n = 1, the lane visibil-
ity is higher when 5m ≤ D1 ≤ 12m. When n = 2, the lane
visibility is higher when 5m≤ D1 ≤ 7m. Therefore, the fake
lane can be detected in a large range of D1 (from 15m to
3m) if the perturbations are properly implemented (like n = 1,
θ = 0 in Fig.11.(a)). Closer distances (D1 ≤ 9m) makes the

physical
perturbations

correct
direction

oncoming
traffic

crossroads

Figure 12: RQ6: Misguide the vehicle into the oncoming traffic in
the crossroads scenario.

perturbation easier to be detected.
Answer: The crafted perturbations can be detected as fake
lanes while staying imperceptible to humans. A demo video
for physical attacks can be found at [8].
RQ6: Can we misguide the vehicle in physical world?
Motivation: The over-sensitivity of the target lane detection
module has been demonstrated in both digital world and phys-
ical world through the answers to the previous RQs (i.e., RQ1,
2, 3, 4 for digital world and RQ5 for physical world). This
RQ aims to investigate whether the control policy of the Au-
topilot will be affected by the crafted markings. Specifically,
if Autopilot reacts to the fake lane, our attacks can impose a
severe threat to the security and safety of the victim vehicle.
Approach: We find that in a commonly-seen crossroads sce-
nario (i.e., the straight lanes disappear in front of the vehicle),
the perturbations can mislead the vehicle to the oncoming
traffic lane (illustrated in Fig.12). Specifically, in a crossroads
scenario, we generate the perturbations that can trick the lane
detection module to output an obvious lane. After physical
deployment, we switch the vehicle to auto-steer mode and let
it pass the crossroads where the markers have been added.
Results: We record the video showing the camera images
and lane images when the vehicle is passing the crossroads.
The result shows that the perturbations can lead to a fake lane
which makes the vehicle swerve. Moreover, the vehicle was
deviated by 5.1 meters (more than 2.5 times the width of the
vehicle), and followed the fake lane to the oncoming traffic,
demonstrating a severe and threat in real world.

Fig.13 illustrates the whole process. In each subfigure, the

correct
direction

middle lane
separating

oncoming traffic
and

correct direction

(a) Vehicle is running on the correct
direction.

physical
perturbations

start to
swerve

(b) Fake lane is detected and vehicle
starts to swerve.

into
oncoming
traffic

(c) Vehicle follows the fake lane into
oncoming traffic.

running in
oncoming

traffic lane!

5.1 meters

(d) Vehicle finally runs in the oncoming
traffic lane!

Figure 13: RQ6: The vehicle in auto-steer mode is misled into the oncoming traffic.

upper row includes the camera image and lane image, and the
lower row shows what was happening when the frame was
recorded. The interpretation of each frame is as below:
Fig.13 (a). Before approaching the crossroads, the vehicle
runs on the right-hand side (correct direction) of the road,
and the middle lane, which separates the two directions, is
correctly recognized as the left-hand side lane (shown in the
lane image).
Fig.13 (b). Right before the vehicle runs into the crossroads,
the perturbations are detected and recognized as the fake
lane, and therefore the vehicle starts to swerve along with the
detected lane.
Fig.13 (c). The vehicle follows the fake lane and swerves to
the left-hand side of the road (oncoming traffic lane). During
this process, the middle lane (right lane in lane image) was
recognized as the right-hand side lane. Based on this detection
result, the vehicle runs into the oncoming traffic.
Fig.13 (d). Finally, the vehicle is deviated by 5.1 meters (more
than 2.5 times the width of the vehicle), and is misled into
the oncoming traffic lane, and further keeps running on this
wrong direction.

Note that there is no human operation in the above process.
The vehicle is in auto-steer mode, and its average speed is
above 40km/h, which is already very dangerous in real world.
Interested readers are referred to our demo video [8].
Answer: The experimental result shows that the fake lane
resulted from the unobtrusive perturbations can successfully
fool the vehicle in auto-steer mode to swerve, and even mis-
guide the vehicle into oncoming traffic (might hit other cars
in the oncoming traffic lane), thus demonstrating the potential
severe threats in real world.

6 Defense

In this section, we propose two kinds of mechanisms to defend
against this attack.
Enhancing the lane detection module. The lane detection
module can be improved to distinguish crafted perturbations
by two ways: (1) Detecting abnormal lane lines by features.
Since the attackers want to make the perturbations unobtru-
sive, the size of the perturbations for generating the fake lane
should be much smaller than the normal lanes. Moreover, as

the attackers want to mislead the vehicle to cause safety and/or
security consequences, the detected fake lane will be inconsis-
tent with the real lanes (e.g., generating sharp turns [37]). As
a result, the lane detection module can leverage these features
to reject the abnormal lanes in advance. (2) Including adver-
sarial examples in training data. As suggested by Goodfellow
et al. [25], adding adversarial examples in the training data
can make the model more robust to adversarial attacks. Hence,
images with perturbations can be included in the training data
to help the lane detection module distinguish between crafted
perturbations and real lane lines.
Enhancing the control policy. To make the control policy
more robust is another option for defense: (1) Taking into con-
sideration other visual elements. The vehicle is vulnerable
to our attacks if the steering control policy just relies on the
lane detection result. Hence, it can be enhanced by involv-
ing other visual elements (i.e., coming traffic, pedestrian) to
assist the steering control. (2) Multi-Sensor fusion. In Tesla
Autopilot, the lane detection module relies on visual data.
A possible defense method is to adopt multi-sensor fusion.
That is, the control policy should also take into account the
information from sensors like LiDAR, Radar, sonar and GPS.
For example, the data from GPS and Radar can be used to
detect whether the vehicle is deviated or running in the on-
coming traffic lane. (3) Advanced warning. As the security of
autonomous driving may not be fully guaranteed, the vehicle
should warn the driver in advance when any abnormal lane
line is detected (e.g., the size of the lane is too small or the
angle of the lane is too sharp, etc.). Moreover, to ensure safety,
the vehicle should demand the driver for manual control and
quit auto-steer mode.

7 Responsible Disclosure

We have informed Tesla of our findings by providing the de-
tails of our attack method and the demo videos. Tesla has
confirmed that this attack can change the target car’s behavior
when the vehicle is in auto-steer mode, and meanwhile em-
phasized that the driver should still pay full attention while
auto-steer mode is on. Tesla did not mention any plan on fix-
ing this vulnerability in the response. We will check whether
Autopilot will adopt any countermeasure in future work.

8 Limitations and Discussion

Limitations. Since our attacks exploit the over-sensitivity of
the lane detection module to mislead the vehicle, the crafted
perturbations need to be detected by the lane detection module
and thus they cannot be completely invisible. Hence, the driver
may notice them if she knows the attack and pays full attention
to the ground. However, our attack still poses severe threats to
current autonomous driving because of the following reasons.
First, drivers are likely to pay less attention in auto-steer mode.
Without being informed of our attack, the driver may simply
ignore the perturbations, not to mention that the vehicle is
in auto-steer mode. According to the statistics given by the
surveys [12][17], distracted driving is the top-1 reason for car
crashing. In auto-steer mode, drivers are likely to pay less
attention so that they may not notice the small perturbations
which are quite different from the real lane. Second, there is
not enough time for reaction. Even if the driver notices the
perturbations when the vehicle is going to the place where
the crafted perturbations have been deployed, there may not
be enough time for the driver to react. For instance, in the
experiment for answering RQ6, the speed of the vehicle is
around 40km/h, and thus it takes only 0.918 seconds to deviate
the vehicle for 5.1m. M. Green [26] shows that the driver’s
reaction times for unexpected events are between 1.20s and
1.35s (> 0.918s in our experiment). Therefore, there is not
sufficient time for the driver to take action against our attack,
and severe consequences might have already been caused.
Future works. We will extend our work from two aspects.
First, we will assess the vulnerability of the lane detection
modules in other autonomous driving systems, including
Apollo [1] and Openpilot [11]. Second, we will explore the
feasibility of launching attacks on the lane detection mod-
ules by adding perturbations on real lanes, such as using dark
markings to cover part of real lanes or adding markings to
change the shape of real lanes.

9 Related Work

Adversarial Attacks. Deep neural network (DNN) have
achieved great performance in many areas. However, re-
searchers found that these models show their vulnerability
when faced with crafted inputs [35, 39, 44, 47]. These mali-
cious inputs can guide the models to make wrong decisions
while staying imperceptible to humans. Besides, the mod-
els may also be subject to other attacks[24, 28, 40], such as
poisoning, backdoor, etc.
Lane Detection. Lane detection is an important task in envi-
ronmental perception of autonomous vehicles, because it pro-
vides the position information and further keeps the vehicles
within the lane lines. Traditional lane detection methods rely
on the selected features to identify lane markings [21, 30, 45],
and thus their performance highly depends on the features.
Recently, DNN has been widely used in lane detection for its

great power in feature extraction [27, 34, 36, 38].
Autonomous Driving Security. To date, many autonomous
driving systems adopt DNN to process data, especially vi-
sion data [10, 13, 19, 20]. These vision-based models take
the camera data as the input, and the corresponding steering
angle as the output. Although these models perform well in
most cases, they can still make wrong decisions in some cases,
which can lead to severe consequences [16, 18]. Eykholt et
al. used a physical adversarial example to make DNN model
misclassify the stop sign [23]. Although the method in [23]
and ours are both “two-stage”, they have different meanings.
The “two-stage” method in [23] is for evaluating the attack
(after the attack is already deployed), whereas our “two-stage”
is for implementing the attack. Zhou et al. proposed a method
called DeepBillboard to generate physical adversarial exam-
ples to make the DNN-based autonomous driving system steer
to the wrong direction [49]. Shen et al. [43] misguided the
vehicle to the wrong direction by GPS spoofing. Ben Nassi et
al. [37] utilize projection to make the vehicle believe that the
projection is the real object (phantom attack), and they also
tested the lane detection module of Tesla Autopilot. However,
the phantom attack only works at night, and it can be easily
noticed. In contrast, our attack can be launched during the
day and is more stealthy.

10 Conclusion

We conduct the first investigation on the lane detection mod-
ule in a real vehicle, and reveal that its sensitivity can be
exploited to launch attacks on the vehicle. Specifically, we pro-
pose a novel two-stage approach to automatically determine
the best perturbations in digital world and then project them
back to the markings in physical world after addressing sev-
eral technical challenges. We conduct extensive experiments
on a Tesla Model S vehicle. The experimental results show
that the lane detection module can be deceived by crafted
perturbations and mislead the vehicle in auto-steer mode.

11 Acknowledgment

We thank our shepherd Yongdae Kim and the anonymous
reviewers for their constructive comments. We thank Prof.
Yubin Xia for helping us in conducting experiments. This
work is partly supported by Hong Kong RGC Projects (No.
152239/18E), Hong Kong ITF Project (No. ITS/197/17FP),
HKPolyU Research Grant (ZVQ8), Start-up Fund (ZVU7),
NSFC for Young Scientists of China (No. 62002306), and
CCF-Tencent Open Research Fund. Ting Wang was partly
supported by the National Science Foundation under Grant
No. 1953893, 1953813, and 1951729.

References

[1] Apollo autonomous driving. https://github.com/
ApolloAuto/apollo.

[2] Camera Calibration and 3D Reconstruction - OpenCV.
https://docs.opencv.org/2.4/modules/calib3d/doc/
camera_calibration_and_3d_reconstruction.html.

[3] CUDA memory management APIs. https://bit.ly/
3dlFozE.

[4] CUDA Toolkit Documentation. https://docs.nvidia.com/
cuda/cuda-c-programming-guide/.

[5] cudaConfigureCall. https://bit.ly/2ZucaX1.

[6] cudaMalloc. https://bit.ly/2M2Qnmb.

[7] cudaMemcpy. https://bit.ly/3aulsIV.

[8] Demonstration video: misguiding the vehicle in real
world. https://youtu.be/a__Se2MrjVs.

[9] IDA Pro. https://www.hex-rays.com/products/ida/.

[10] Nvidia, Drive AP2X. https://www.nvidia.com/en-us/
self-driving-cars/drive-platform.

[11] Openpilot autonomous driving. https://github.com/
commaai/openpilot.

[12] Past statistics on texting & cell phone use while driv-
ing. https://www.edgarsnyder.com/car-accident/cause-
of-accident/cell-phone/past-cell-phone-statistics.html.

[13] Tesla Autopilot System. https://www.tesla.com/
autopilot.

[14] Tesla Hardware Information. https://teslatap.com/
undocumented/.

[15] Tesla Model S. https://www.tesla.com/models.

[16] Tesla Model S crash. https://www.wired.com/story/
tesla-autopilot-why-crash-radar.

[17] Texting and driving accident statistics. https:
//www.edgarsnyder.com/car-accident/cause-of-
accident/cell-phone/cell-phone-statistics.html.

[18] Uber’s Self-Driving Cars Were Struggling Before Ari-
zona Crash. https://www.nytimes.com/2018/03/23/
technology/uber-self-driving-cars-arizona.html.

[19] Udacity Self-driving Car. https://github.com/udacity/
self-driving-car.

[20] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner,
B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller,
J. Zhang, et al. End to end learning for self-driving cars.
arXiv:1604.07316, 2016.

[21] A. Borkar, M. Hayes, and M. T. Smith. A novel lane
detection system with efficient ground truth generation.
IEEE Transactions on Intelligent Transportation Sys-
tems, 13(1):365–374, 2011.

[22] G. Bradski and A. Kaehler. Learning OpenCV: Com-
puter vision with the OpenCV library. " O’Reilly Media,
Inc.", 2008.

[23] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati,
C. Xiao, A. Prakash, T. Kohno, and D. Song. Robust
physical-world attacks on deep learning visual classifi-
cation. In Proc. CVPR, 2018.

[24] M. Goldblum, D. Tsipras, C. Xie, X. Chen,
A. Schwarzschild, D. Song, A. Madry, B. Li, and
T. Goldstein. Dataset security for machine learn-
ing: Data poisoning,backdoor attacks, and defenses.
arXiv:2012.10544, 2020.

[25] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining
and harnessing adversarial examples. arXiv:1412.6572,
2014.

[26] M. Green. " how long does it take to stop?" methodolog-
ical analysis of driver perception-brake times. Trans-
portation human factors, 2(3), 2000.

[27] B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song,
J. Pazhayampallil, M. Andriluka, P. Rajpurkar, T. Migi-
matsu, R. Cheng-Yue, et al. An empirical evaluation of
deep learning on highway driving. arXiv:1504.01716,
2015.

[28] Y. Ji, X. Zhang, S. Ji, X. Luo, and T. Wang. Model-reuse
attacks on deep learning systems. In Proc. CCS, 2018.

[29] X. Jiang and S. Li. Bas: beetle antennae search algo-
rithm for optimization problems. arXiv:1710.10724,
2017.

[30] H. Jung, J. Min, and J. Kim. An efficient lane detection
algorithm for lane departure detection. In Proc. IEEE
Intelligent Vehicles Symposium, 2013.

[31] D. Karaboga and B. Basturk. A powerful and efficient
algorithm for numerical function optimization: artificial
bee colony (abc) algorithm. Journal of global optimiza-
tion, 39(3):459–471, 2007.

[32] J. Kennedy. Particle swarm optimization. Encyclopedia
of machine learning, pages 760–766, 2010.

[33] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimiza-
tion by simulated annealing. science, 220(4598):671–
680, 1983.

[34] S. Lee, J. Kim, J. Shin Yoon, S. Shin, O. Bailo, N. Kim,
T.-H. Lee, H. Seok Hong, S.-H. Han, and I. So Kweon.
Vpgnet: Vanishing point guided network for lane and
road marking detection and recognition. In Proc. ICCV,
2017.

[35] H. Li, S. Zhou, W. Yuan, X. Luo, C. Gao, and S. Chen.
Robust android malware detection against adversarial
example attacks. In Proc. WWW, 2021.

[36] J. Li, X. Mei, D. Prokhorov, and D. Tao. Deep neural
network for structural prediction and lane detection in
traffic scene. IEEE transactions on neural networks and
learning systems, 28(3):690–703, 2016.

[37] B. Nassi, D. Nassi, R. Ben-Netanel, Y. Mirsky,
O. Drokin, and Y. Elovici. Phantom of the adas: Phan-
tom attacks on driver-assistance systems. In Proc. CCS,
2020.

[38] D. Neven, B. De Brabandere, S. Georgoulis, M. Proes-
mans, and L. Van Gool. Towards end-to-end lane detec-
tion: an instance segmentation approach. In Proc. IEEE
Intelligent Vehicles Symposium, 2018.

[39] R. Pang, H. Shen, X. Zhang, S. Ji, Y. Vorobeychik,
X. Luo, A. X. Liu, and T. Wang. A tale of evil twins:
Adversarial inputs versus poisoned models. In Proc.
CCS, 2020.

[40] R. Pang, X. Zhang, S. Ji, X. Luo, and T. Wang. Advmind:
Inferring adversary intent of black-box attacks. In Proc.
KDD, 2020.

[41] S. Ruder. An overview of gradient descent optimization
algorithms. arXiv:1609.04747, 2016.

[42] T. Sato, J. Shen, N. Wang, Y. J. Jia, X. Lin, and Q. A.
Chen. Security of deep learning based lane keep-
ing system under physical-world adversarial attack.
arXiv:2003.01782, 2020.

[43] J. Shen, J. Y. Won, Z. Chen, and Q. A. Chen. Drift with
devil: Security of multi-sensor fusion based localization
in high-level autonomous driving under GPS spoofing.
In Proc. USENIX Security Symposium, 2020.

[44] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Er-
han, I. Goodfellow, and R. Fergus. Intriguing properties
of neural networks. arXiv:1312.6199, 2013.

[45] H. Tan, Y. Zhou, Y. Zhu, D. Yao, and K. Li. A novel
curve lane detection based on improved river flow and
ransa. In Proc. IEEE Conference on Intelligent Trans-
portation Systems, 2014.

[46] T. Wang, L. Yang, and Q. Liu. Beetle swarm
optimization algorithm: Theory and application.
arXiv:1808.00206, 2018.

[47] X. Zhang, N. Wang, H. Shen, S. Ji, X. Luo, and T. Wang.
Interpretable deep learning under fire. In Proc. USENIX
Security Symposium, 2020.

[48] Z. Zhang. A flexible new technique for camera cali-
bration. IEEE Transactions on pattern analysis and
machine intelligence, 22, 2000.

[49] H. Zhou, W. Li, Y. Zhu, Y. Zhang, B. Yu, L. Zhang, and
C. Liu. Deepbillboard: Systematic physical-world test-
ing of autonomous driving systems. arXiv:1812.10812,
2018.

Figure 14: Three front cameras on the vehicle

Figure 15: Three kinds of camera images dumped from GPU mem-
ory. Left one is the fisheye image; middle one is the main image and
right one is the narrow image. We found that the lane detection is
based on the main image.

A Correlation Analysis on Camera Images

As mentioned in §3.4, we find that there are 3 types of camera
images, which may come from the three front cameras on
the vehicle (shown in Fig.14). We dump the data based on
the data size and GPU address, and visualize them based on
the known resolution and color depth. The visualized results
are shown in Fig.15. We can see that there are three kinds
of camera images in different focal lengths, and the three
kinds of images exactly match the three front cameras on the
vehicle. However, we do not know which image(s) is used for
lane detection.

To find the relationship, we physically cover the cameras
and see how this change affects the lane image. In Fig.15,
from left to right, we name the cameras with different fo-
cal length as fisheye, main and narrow. We stop the vehicle
in front of an obvious lane line to make sure that the lane
detection module will output a solid lane. Then, we set the
following three scenarios: (1) One camera is on: lane pixels
are observed only when main camera is not covered; (2) Two
cameras are on: the result is the same as (1), and the lane im-
age is identical to the one observed in (1); (3) Three cameras
are on: lane image is identical to the ones observed in (1).
This result indicates that only the main camera image is used
for lane detection.

B Camera Model and Coordinate Mapping

The goal of coordinate mapping is to deploy physical pertur-
bations based on digital perturbations. Therefore, for every
possible coordinate on the ground in physical world, we need
to know the corresponding 2D coordinate in digital image.
We build the coordinate mapping relationship based on the
pinhole camera model. It is based on the physical structure

Figure 16: Pinhole camera model illustration (from OpenCV li-
brary [2])

of monocular cameras, which describes the mathematical re-
lationship between 3D coordinate in physical world and 2D
coordinate in digital world in the ideal case [22].

Fig.16 shows the pinhole camera model. Our purpose is to
transform the physical world coordinate P= (X ,Y,Z) to (u,v)
in digital world. Fc is the position of the camera, and from this
position, three perpendicular axes are expanded. The camera
projects the physical world coordinate P = (X ,Y,Z) to the
focal lane z = f , where f is the intrinsic focal length of the
camera. With the following mathematical relation, the model
is able to transform 3D physical world coordinate (X ,Y,Z) to
2D coordinate (x,y) in the focal plane:

X
x
=

Y
y
=

Z
f

(3)

Based on this equation, given the physical coordinate (X ,Y,Z)
and focal length f , we can project any 3D point in physical
world to the 2D focal plane. However, since this coordinate
(x,y) is still a continuous variable in physical unit, we need
to transform it into discrete value (u,v). This is finished by
the following equation:{

sx = u− cx

sy = cy− v
, (4)

where s is the scale factor between the physical coordinate and
digital coordinate. (cx,cy) is the coordinate of the center point
in the digital image, which can be accessed by checking the
resolution of the image. By combining equation (3) and (4),
we get the mapping relationship between the 3D and 2D
coordinates as follows:{

u = s f X
Z + cx

v = cy− s f Y
Z

(5)

In practice, the scale factor s in the projection of two axes may
be slightly different. Therefore, we use sx and sy to denote the

scale factor in horizontal and vertical directions, respectively.
Since f is bind to sx and sy in equation (5), we set Fx = f sx
and Fy = f sy to represent them, respectively, and the mapping
relationship can be written as:{

u = Fx
X
Z + cx

v = cy−Fy
Y
Z

(6)

In equation (6), (X ,Y,Z) is the 3D coordinate of a point in
physical world and (u,v) is the 2D coordinate of the point
in digital world. cx and cy are learned from the resolution of
the image. Fx and Fy are learned from the calibration of the
camera. With these four variables (cx, cy, Fx and Fy), given
any physical world coordinate (X ,Y,Z), we can transform it
into digital coordinate (u,v).

However, in most cases, the captured image is distorted due
to the intrinsic flaws of the camera, and these distortions can
affect the mapping accuracy [22] [48]. To make the mapping
more accurate, based on the camera calibration theory [48],
we eliminate the inaccuracy caused by lens distortion.

C Adopted Heuristic Algorithms

C.1 Introduction of the Algorithms

Beetle Antennae Search (BAS). Beetle Antennae
Search [29] was inspired by the searching behavior of
longhorn beetles. The position of the beetles represents the
input parameter (x), and each of the beetles will search the
area based on the information received from the antennae.
BAS has three major steps:

(1) Randomly generating antennae direction. The direction
of the antennae is generated by the following equation:

~b =
random(k)
‖random(k)‖

, (7)

where random(k) donates a random function to create a k-
dimension vector. We fixe k to 8 as x has 8 dimensions.

(2) Updating antennae positions. BAS assumes that the
two antennae are always at the opposite position. Based on
the current position and generated direction, the position of
the antennae could be computed as follows:

xl = xt +dt~b (8)
xr = xt −dt~b (9)
dt = ηdt−1 (10)

d is the searching step (current antennae length) and it should
decrease with t. η is the decreasing rate set to make d decrease
with searching process (0 < η < 1).

(3) Updating parameters. The updating strategy is defined
as follows:

xt = xt−1 +~bDtsign(S(xl)−S(xr)) (11)
Dt = ηDt (12)

sign denotes a sign function. Dt is the moving step of the
current round, which should also decrease with the searching
process. Generally, Dt > dt .
Particle Swarm Optimization(PSO). PSO [32] is one of
the most classic heuristic algorithms. It is performed in paral-
lel and the particles can share information with each other.

The velocity used to update the position of the particles
could be described as follows:

vt+1
s = wvt

s + c1r1(pt
s− xt

s)+ c2r2(gt
s− xt

s), (13)

where s denotes the dimension of v or x, and t denotes the
current round of iteration. w, c1 and c2 are positive constants,
and r1 and r2 are two random numbers in the range [0,1]. pt

s
is the best historical position of the current particle, and gt

s is
the best historical position of all particles.
Beetle Swarm Optimization (BSO). BSO [46] is the com-
bination of BAS and PSO. BAS has better ability to find
the optimized direction near a single particle (beetle), and
PSO allows the particles to share information with each other.
Therefore, the updating formula of BSO is as follows:

xt+1
s = xt

s +mvt+1
s +(1−m)ξt+1

s , (14)

where m is a constant in the range [0,1] that represents the
ratio of the two kinds of velocity. vt+1

s is the speed concluded
in the tth iteration and ξt+1

s is the BAS speed in sth dimension.
Artificial Bee Colony (ABC). ABC [31] is another repre-
sentative swarm intelligent optimizing algorithm, which is
inspired by the behaviors of bees. It has three kinds of bees
(particles): employed bees, onlooker bees and scouts. Posi-
tions of the bees represent the input parameter (x) and the bees
aim to find the location which has the most nectar (S(x) as
the fitness function). At the initialization stage, the employed
bees are sent to random locations to look for nectar, and will
share the information of the nectar amount (S(x)) with the
onlooker bees. Then, the onlooker bees choose a food source
depending on the probability value associated with the corre-
sponding nectar amount. The probability of an onlooker bee
choosing the position of the employed bee xi is calculated by
the following expression:

pi =
S(xi)

∑
Size
n=1 S(xn)

, (15)

where Size is the number of employed bees. Generally, po-
sitions where S(x) has greater value are more likely to be
chosen. After this step, the onlooker bees randomly choose
a position near the employed bee and return the new fitness
function value. If this new position has more food (higher S(x)
value) than the position of the employed bee, this onlooker
bee will become the employed bee and the old position will be
abandoned. If the onlooker bees fail to find a better position
around the employed bee for several rounds, this position will
be abandoned and this employed bee will become the scout
to randomly look for a new food source.
Simulated Annealing (SA). SA [33] is another classic

heuristic algorithm aiming to find the global optimum of
a certain function. In SA, the current searching individual
randomly looks for a solution close to the current position,
and then compares the function value (S(x) in our situation)
in the two positions. We denote the current position as xt and
the tested position as xp. If S(xp)> S(xt), this position will be
accepted (xt+1 = xt). Otherwise, this position will be accepted
with a given possibility:

P = e
∆E
T , (16)

where ∆E = S(xp)−S(xt), and T decreases in the searching
process. Decreasing T means that worse solutions are more
likely to be accepted at first, and as searching continues, SA
should converge to the global optimum and is less likely to
accept these worse solutions.

C.2 Parameter Setting of Algorithms in RQ1
The number of the input is set as 30. We set the number of
searching rounds as 30 because we found all five algorithms
converge within 30 rounds in the experiment.
BAS: We denote the norm of the maximum vector in X as
||xmax||, then set the antennae length and moving step based on
this value. Specifically, we set the antennae length d1 = ||xmax||

30 ,
decreasing parameter η = 0.95. The step length is assigned
three different values. We set D1 = m||xmax|| and let m = 0.1,
m = 0.2 and m = 0.3. m affects the convergence speed.
PSO: We fix w = 0.3 and c1 = c2 = 1. Then, we vary the
ratio between r1 and r2, because they represent the updating
speed derived from the individual information and from the
whole group information, respectively. We denote ratio = r1

r2
,

and implement three settings: (1) ratio = 0.5; (2) ratio = 2;
(3) random value. In (1), r1 is a random number in range [0,1]
and r2 values double. In (2), r2 is random in the same range,
and r1 is double r2. In (3), r1 and r2 are independent random
values in the range [0,1].
BSO: As BSO is the combination of BAS and PSO, we give
different proportions to the speed derived from BAS and PSO.
Let v1 be the speed from BAS and v2 be the speed from PSO.
Then, we adjust the ratio between v1 and v2. The ratio is set
to three values: 1, 0.5 and 2. For BAS, m = 0.1. For PSO, r1
and r2 are independent random values (setting (3)).
ABC: We implement two settings: (1) onlooker bees choose
searching positions based on equation 15; (2) onlooker bees
only choose the best S(xi) as the position to investigate. Set-
ting (1) is the classic setting of ABC algorithm. For setting
(2), since only positions with the best scores are accepted, the
algorithm will converge more quickly, but meanwhile is more
likely to fall into the local optimum (because setting (2) can
only explore the currently best position, missing the chance
to explore more positions).
SA: As the temperature T determines the probability that one
solution will be accepted, it affects the convergence speed.
We set T to three values (10, 30, 50).

initial perturbation:
score=23.88

Find best width:
1cm

10 rounds
lane computing

perturbation with best width:
score=74.82

perturbation with best
width and length:

score=244.93

251 rounds
lane computing

Find best length:
52cm

perturbation with best
width, length, and distance:

score=369.09

1,001 rounds
lane computing

Find best
distance: 1,290cm

PSO finds the score of 449.70
in 87 rounds of lane computing

best perturbation:
score=449.70

Recuding size: After 1,262 rounds of lane computing, perturbation with score of 369.09 is found.

PSO resultResult_4Result_3Result_2Result_1

Figure 17: Comparison of the RS method and PSO.

Paras
Results

step Result_1 Result_2 Result_3 Result_4

wid 1cm 20cm 1cm 1cm 1cm
len 1cm 300cm 300cm 52cm 52cm
D1 1cm 16m 16m 16m 12.90m

score \ 23.88 74.82 244.93 369.09

Table 5: Finding the perturbation by RS method. The first column
(step) lists the step used for searched parameter; The columns Re-
sult_1 lists the initial values of wid, len, and D1 and the correspond-
ing score; The columns Result_2 to Result_4 shows the values of
wid, len, and D1 after each major steps and the corresponding scores.
The corresponding images are shown in Fig.17.

D Why not simply reducing the size of pertur-
bations?

As introduced in §4, we formulate an optimization problem
to find the best digital perturbations.Another possible way to
find the best perturbation is reducing the size of perturbations
until a minimum size that still registers on the lane detection
model is found. We call it as RS method. Although the RS
method is simple, the experimental results show that it is less
effective and efficient than our heuristic algorithms, because it
cannot jointly optimize the parameters to find the best pertur-
bation. Below we explain how we carry out the experiments
for comparison and the results are shown in Fig.17.

For the convenience of comparison, we fix four param-
eters and search the best value for the other three param-
eters. Specifically, the fixed parameters are: n = 1, θ = 0,
D2 = 2.50m and ∆G = 20. Then, the RS method looks for the
best wid, len and D1 through the following steps.
Step 1. Initialization. The basic idea of the RS method is
to progressively keep reducing the perturbation size until
the best score is found. To achieve this, we need to first set
the initial perturbation that can generate the fake lane, and
then adjust the parameter of this perturbation. The initial
values of the parameters are set to x = (n = 1,θ = 0,D2 =

2.50m,∆G = 20,wid = 20cm, len = 300cm,D1 = 16m). As
shown in Result_1 in Fig.17 and Tab.5, the score S(x) of the
initial perturbation is 23.88.

Step 2. Find the best width (wid). We let the width wid of the
perturbation be from 10cm to 1cm (i.e., decreasing it by 1cm
each round), and record the score of each perturbation. We
finally find that the best width is 1cm, and the corresponding
best score is 74.82 (shown in Result_2 in Fig.17 and Tab.5).
Since wid is decreased by 1cm each round, the searching of
this step takes 10 rounds of lane computing.

Step 3. Find the best length (len). We let the length len of
the perturbation be from 300cm to 50cm (i.e., decreasing it
by 1cm each round). Eventually, we find the best length of
52cm, and the corresponding best score is 244.93 (shown in
Result_3 in Fig.17 and Tab.5). Since len is decreased by 1cm
each round, the searching of this step takes 251 rounds of lane
computing.

Step 4. Find best longitudinal distance (D1). We let the lon-
gitudinal distance D1 of the perturbation be from 2,000cm
to 1,000cm (i.e., decreasing it by 1cm each round). We fi-
nally find that the best D1 is 1,290cm, and the corresponding
best score is 369.09 (shown in Result_4 in Fig.17 and Tab.5).
Since D1 is decreased by 1cm each round, the searching of
this step takes 1,001 rounds of lane computing.

• Heuristic algorithm: Since the answer to RQ1 indicates
that PSO is the best one for solving our optimization problem,
we choose PSO for comparison. The experimental setup is
the same as that in RQ1. As shown in PSO result in Fig.17,
PSO finds the perturbation with a score of 449.70 by taking
only 87 rounds of lane computing.

• Conclusion. PSO takes only 87 rounds of lane computing
to find a better result (S(x) = 449.70) than the RS method
(S(x) = 369.09) that takes 1,262 rounds of lane computing.
Therefore, PSO is more effective and efficient (about 15 times
faster) than the RS method.

